共 89 条
[1]
Ayuso B(2011)Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system KRM 4 955-989
[2]
Carrillo J(2008)Selective monotonicity preservation in scalar advection J. Comput. Phys. 227 5160-5183
[3]
Shu C-W(1990)An Eulerian–Lagrangian localized adjoint method for the advection–diffusion equation Adv. Water Resour. 13 187-206
[4]
Blossey P(1990)Characteristic Galerkin methods for scalar conservation laws in one dimension SIAM J. Numer. Anal. 27 553-594
[5]
Durran D(2014)A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations J. Comput. Phys. 267 7-27
[6]
Celia M(1990)The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case Math. Comput. 54 545-581
[7]
Russell T(1989)TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems J. Comput. Phys. 84 90-113
[8]
Herrera I(1989)Shu. C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework Math. Comput. 52 411-435
[9]
Ewing R(1991)The Runge-Kutta local projection Math. Model. Numer. Anal. 25 337-361
[10]
Childs P(1998)-discontinuous Galerkin finite element method for scalar conservation laws SIAM J. Numer. Anal. 35 2440-2463