Gaussian-kernel c-means clustering algorithms

被引:0
|
作者
Shou-Jen Chang-Chien
Yessica Nataliani
Miin-Shen Yang
机构
[1] Chung Yuan Christian University,Department of Applied Mathematics
[2] Satya Wacana Christian University,Department of Information Systems
来源
Soft Computing | 2021年 / 25卷
关键词
Clustering; Hard ; -means (HCM); Fuzzy ; -means (FCM); Gaussian-kernel HCM (GK-HCM); Gaussian-kernel FCM (GK-FCM); MRI segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c-means (HCM) (or called k-means) and fuzzy c-means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy when the data set has different shape clusters. For solving these drawbacks in HCM and FCM, Wu and Yang (Pattern Recognit 35:2267–2278, 2002) proposed the alternative c-means clustering with an exponential-type distance that extends HCM and FCM into alternative HCM (AHCM) and alternative FCM (AFCM). In this paper, we construct a more generalization of AHCM and AFCM with Gaussian-kernel c-means clustering, called GK-HCM and GK-FCM. For theoretical behaviors of GK-FCM, we analyze the bordered Hessian matrix and then give the theoretical properties of the GK-FCM algorithm. Some numerical and real data sets are used to compare the proposed GK-HCM and GK-FCM with AHCM and AFCM methods. Experimental results and comparisons actually demonstrate these good aspects of the proposed GK-HCM and GK-FCM algorithms with its effectiveness and usefulness. Finally, we apply the GK-FCM algorithm to MRI segmentation.
引用
收藏
页码:1699 / 1716
页数:17
相关论文
共 50 条
  • [1] Gaussian-kernel c-means Clustering Algorithms
    Yang, Miin-Shen
    Chang-Chie, Shou-Jen
    Nataliani, Yessica
    THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2018), 2018, 11324 : 124 - 135
  • [2] Gaussian-kernel c-means clustering algorithms
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    Yang, Miin-Shen
    SOFT COMPUTING, 2021, 25 (03) : 1699 - 1716
  • [3] Indefinite Kernel Fuzzy c-Means Clustering Algorithms
    Kanzawa, Yuchi
    Endo, Yasunori
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 116 - 128
  • [4] Gaussian kernel c-means hard clustering algorithms with automated computation of the width hyper-parameters
    de Carvalho, Francisco de A. T.
    Simoes, Eduardo C.
    Santana, Lucas V. C.
    Ferreira, Marcelo R. P.
    PATTERN RECOGNITION, 2018, 79 : 370 - 386
  • [5] Alternative c-means clustering algorithms
    Wu, KL
    Yang, MS
    PATTERN RECOGNITION, 2002, 35 (10) : 2267 - 2278
  • [6] Kernel C-Means Clustering Algorithms for Hesitant Fuzzy Information in Decision Making
    Chaoqun Li
    Hua Zhao
    Zeshui Xu
    International Journal of Fuzzy Systems, 2018, 20 : 141 - 154
  • [7] Kernel C-Means Clustering Algorithms for Hesitant Fuzzy Information in Decision Making
    Li, Chaoqun
    Zhao, Hua
    Xu, Zeshui
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (01) : 141 - 154
  • [8] Optimizing kernel possibilistic fuzzy C-means clustering using metaheuristic algorithms
    Singh, Saumya
    Srivastava, Smriti
    EVOLVING SYSTEMS, 2024, 15 (04) : 1587 - 1606
  • [9] KNCM: Kernel Neutrosophic c-Means Clustering
    Akbulut, Yaman
    Sengur, Abdulkadir
    Guo, Yanhui
    Polat, Kemal
    APPLIED SOFT COMPUTING, 2017, 52 : 714 - 724
  • [10] Kernel Approach to Possibilistic C-Means Clustering
    Rhee, Frank Chung-Hoon
    Choi, Kil-Soo
    Choi, Byung-In
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (03) : 272 - 292