On Generalized Hamming Weights for Galois Ring Linear Codes

被引:26
作者
Ashikhmin A. [1 ]
机构
[1] Los Alamos National Laboratory, Group CIC-3, MS P990, Los Alamos
关键词
Galois ring linear codes; Generalized Hamming weights;
D O I
10.1023/A:1008227811117
中图分类号
学科分类号
摘要
The definition of generalized Hamming weights (GHW) for linear codes over Galois rings is discussed. The properties of GHW for Galois ring linear codes are stated. Upper and existence bounds for GHW of Z4 - linear codes and a lower bound for GHW of the Kerdock code over Z4 are derived. GHW of some Z4 - linear codes are determined.
引用
收藏
页码:107 / 126
页数:19
相关论文
共 15 条
[1]  
Ashikhmin A., Generalized Hamming Weights for Z<sub>4</sub>-Linear Codes, Proc. the 1994 IEEE International Symposium on Information Theory, (1994)
[2]  
Ashikhmin A., On Generalized Hamming Weights for Galois Ring Linear Codes, Proc. Seventh Joint Swedish-Russian Int. Workshop on Information Theory, pp. 20-24, (1995)
[3]  
Ashikhmin A., On Generalized Hamming Weights for Galois Ring Linear Codes, Proc. Mediterranean Workshop on Coding and Information Integrity, (1996)
[4]  
Bassalygo L.A., Supports of a Code, Lecture Notes in Computer Science, 948, pp. 1-3, (1995)
[5]  
Cohen G., Litsyn S., Zemor G., Upper Bounds on Generalized Distances, IEEE Trans. Inf. Theory, IT-40, 6, pp. 2090-2092, (1994)
[6]  
Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Sole P., The Z<sub>4</sub>-Linearity of Kerdock, Preparata, Goethals and Related Codes, IEEE Trans. Inform. Theory, IT-40, pp. 301-319, (1994)
[7]  
Helleseth T., Klove T., Mykkelveit J., The Weight Distribution of Irreducible Cyclic Codes with Block Lengths n<sub>1</sub>((q<sup>l</sup> - 1)/N), Discrete Math., 18, pp. 179-211, (1977)
[8]  
Helleseth T., Klove T., Ytrehus O., Generalization of the Griesmer Bound, Lecture Notes in Computer Science, 829, pp. 41-52, (1993)
[9]  
MacWilliams F.J.K., Sloane N.J.A., The Theory of Error-Correcting Codes, (1977)
[10]  
Nechaev A.A., Kerdock Code in a Cyclic Form, Diskret. Mat., 1, 4, pp. 123-139, (1989)