The power structure of locally nilpotent p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-groups

被引:0
作者
Heng Lv
Guiyun Chen
Wei Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
关键词
ernikov group; Locally nilpotent group; Divisible abelian ; -group; 20D15; 20F19;
D O I
10.1007/s00013-016-1000-5
中图分类号
学科分类号
摘要
We shall extend the research on power structure of finite p-groups in Mann (J Algebra 42:121–135, 1976) to locally nilpotentp-groups. Firstly, we obtain that a locally nilpotent Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document}-group G with |G:℧1(G)|<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G:\mho _1(G)|< \infty $$\end{document} is an extension of a divisible abelian group by a finite p-group. Next we get the structure of infinite locally nilpotent p-groups which are not Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document}-groups, but all of whose proper infinite subgroups are Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document}-groups. Finally, we show that locally nilpotent Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document}-groups with all subgroups subnormal are nilpotent.
引用
收藏
页码:123 / 131
页数:8
相关论文
共 5 条
[1]  
Berkovich Y(1988)On abelian subgroups of J. Algebra 199 262-280
[2]  
Casolo C(2002)-groups J. Group Theory 5 293-300
[3]  
Mann A(1976)On the structure of groups with all subgroups subnormal J. Algebra 42 121-135
[4]  
Menegazzo F(1985)The power structure of J. Lond. Math. Soc. 31 272-276
[5]  
Stonehewer S(undefined)-groups I undefined undefined undefined-undefined