High-performance one and two-dimensional doped polypyrrole nanostructure for polymer solar cells applications

被引:0
|
作者
Eman M. F. Abd El. Halium
Howaida Mansour
Najah. F. H. Alrasheedi
Ahmed F. Al-Hossainy
机构
[1] Qassim University,Chemistry Department, College of Science and Arts
[2] Aswan University,Chemistry Department, Faculty of Science
[3] Qassim University,Physics Department, College of Science and Arts
[4] Ain Shams University,Physics Department, Faculty of Women for Arts, Science, and Education
[5] Northern Border University,Chemistry Department, Faculty of Science
[6] New Valley University,Chemistry Department, Faculty of Science
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hydrochloric acid-doped polypyrrole one and two dimensions have been produced in the existence of methyl orange dye (MO) and sodium dodecyl sulfate (SDS) using ferric chloride (anhydrous) as an oxidizing agent via oxidative polymerization method. Both MO and SDS played an exclusive rule in the preparation of polypyrrole. Using MO produces PPy nanotubes (PPy-M) while using SDS produces sheet form (PPy-S). The use of doped polymer instead of polymer is one of the most critical tasks to improve the electrical conductivity of the fabricated polymer solar cells. The structure of doped polypyrrole was examined by FTIR. Surface morphologies were studied by SEM technique. The thin films of the doped polypyrrole [PPy-S]TF and [PPy-M]TF were fabricated by utilizing the physical vapor deposition (PVD) technique at 5 × 10−5 mbar with a thickness of 150 ± 5 nm/25 °C. The doped polypyrrole thin films were tested by both experimental and, DFT theoretical methods (DMOl3), including FT-IR spectrum and optical properties. The results specifically determine that ΔEgOpt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {E}_{g}^{\text{Opt}}$$\end{document} values and it found up to 2.88 eV and 2.15 eV by the DFT calculations of HOMO and LUMO for [PPy-S] and [PPy-M], respectively. This result indicates that the doped polypyrrole tubes have a conductor property more than [PPy-S]. The heterojunction represents a photo-voltaic performance through Voc=0.59V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}_{\text{oc}}=0.59 V$$\end{document}, Jsc=4.88mA/cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_{\text{sc}}=4.88 \,\text{mA/cm}$$\end{document}, FF=0.532\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{FF}=0.532$$\end{document} and, η=4.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta =4.85$$\end{document} underillumation neath 50 mW/cm2 white-light lighting. The comparison between the one and two-dimensional polypyrrole was achieved based on different parameters.
引用
收藏
页码:10165 / 10182
页数:17
相关论文
共 50 条
  • [1] High-performance one and two-dimensional doped polypyrrole nanostructure for polymer solar cells applications
    Halium, Eman M. F. Abd El
    Mansour, Howaida
    Alrasheedi, Najah F. H.
    Al-Hossainy, Ahmed F.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (13) : 10165 - 10182
  • [2] High-Performance Organic Solar Cells by Adding Two-Dimensional GeSe
    Tan, Jingyu
    Zhao, Yujun
    Li, Guanliang
    Yang, Song
    Huang, Chengwen
    Yu, Huangzhong
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (52)
  • [3] Two-Dimensional Bi2O2Se with High Mobility for High-Performance Polymer Solar Cells
    Huang, Chengwen
    Yu, Huangzhong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) : 19643 - 19654
  • [4] Binary Solvent Engineering for High-Performance Two-Dimensional Perovskite Solar Cells
    Zhang, Jianjun
    Zhang, Liuyang
    Li, Xiaohe
    Zhu, Xinyi
    Yu, Jiaguo
    Fan, Ke
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (03): : 3487 - 3495
  • [5] Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications
    Kim, Kang Lib
    Koo, Min
    Park, Cheolmin
    NANOSCALE, 2020, 12 (09) : 5293 - 5307
  • [6] A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor
    Yao, Hua
    Zhang, Feng
    Zhang, Gaowei
    Luo, Hongyu
    Liu, Lu
    Shen, Minhui
    Yang, Yangyi
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 2547 - 2557
  • [8] Two-Dimensional Nanostructure Anti-Reflection Enhancing Performance Silicon Solar Cells
    Hasanah, Lilik
    Rahmawati, Yuni
    Wulandari, Chandra
    Mulyanti, Budi
    Pawinanto, Roer Eka
    Rusydi, Andrivo
    SILICON, 2024, : 6277 - 6286
  • [9] Interface passivation strategies for high-performance perovskite solar cells using two-dimensional perovskites
    Huang, He
    Zhang, Xiaobo
    Zhou, Wencai
    Huang, Yong
    Zheng, Zilong
    Chen, Xiaoqing
    Zhang, Yongzhe
    Yan, Hui
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (21) : 3528 - 3557
  • [10] Two-dimensional MXene incorporating for electron and hole transport in high-performance perovskite solar cells
    Aftab, Sikandar
    Abbas, Aumber
    Iqbal, Muhammad Zahir
    Hussain, Sajjad
    Kabir, Fahmid
    Hegazy, Hosameldin Helmy
    Xu, Fan
    Kim, Jae Hong
    Goud, Burragoni Sravanthi
    MATERIALS TODAY ENERGY, 2023, 36