Regularity of binomial edge ideals of certain block graphs

被引:0
作者
A V Jayanthan
N Narayanan
B V Raghavendra Rao
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Computer Science and Engineering
来源
Proceedings - Mathematical Sciences | 2019年 / 129卷
关键词
Binomial edge ideals; Castelnuovo–Mumford regularity; block graph; tree; 13D02; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the regularity of binomial edge ideals of graphs obtained by gluing two graphs at a free vertex is the sum of the regularity of individual graphs. As a consequence, we generalize certain results of Zafar and Zahid (Electron J Comb 20(4), 2013). We obtain an improved lower bound for the regularity of trees. Further, we characterize trees which attain the lower bound. We prove an upper bound for the regularity of certain subclass of block-graphs. As a consequence, we obtain sharp upper and lower bounds for a class of trees called lobsters.
引用
收藏
相关论文
共 17 条
[1]  
Ene V(2015)On the regularity of binomial edge ideals Math. Nachr. 288 19-24
[2]  
Zarojanu A(2011)Cohen–Macaulay binomial edge ideals Nagoya Math. J. 204 57-68
[3]  
Herzog J(2010)Binomial edge ideals and conditional independence statements Adv. Appl. Math. 45 317-333
[4]  
Ene V(2016)The Castelnuovo–Mumford regularity of binomial edge ideals Journal of Combinatorial Theory, Series A 139 80-86
[5]  
Hibi T(2013)Regularity bounds for binomial edge ideals J. Commut. Algebra 5 141-149
[6]  
Hreinsdóttir F(2011)Graphs and ideals generated by some 2-minors Commun. Algebra 39 905-917
[7]  
Kahle T(2014)Construction of Cohen–Macaulay binomial edge ideals Commun. Algebra 42 238-252
[8]  
Herzog J(undefined)undefined undefined undefined undefined-undefined
[9]  
Hibi T(undefined)undefined undefined undefined undefined-undefined
[10]  
Rauh J(undefined)undefined undefined undefined undefined-undefined