Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

被引:0
作者
D. Kagamihara
Y. Ohashi
机构
[1] Keio University,Department of Physics, Faculty of Science and Technology
来源
Journal of Low Temperature Physics | 2017年 / 187卷
关键词
Ultracold Fermi gas; BCS–BEC crossover; Strong-coupling effect;
D O I
暂无
中图分类号
学科分类号
摘要
We theoretically investigate the shear viscosity η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}, as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen–Cooper–Schrieffer (BCS)–Bose–Einstein condensation (BEC) crossover region. We also evaluate η/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta / s$$\end{document}, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is remarkably suppressed near the superfluid phase transition temperature Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{c}}$$\end{document}, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}. We also show that η/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta / s$$\end{document} decreases with increasing the interaction strength, to become very close to the KSS bound, ħ/4πkB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar /4\pi k_{\mathrm{B}}$$\end{document}, on the BEC side.
引用
收藏
页码:692 / 698
页数:6
相关论文
共 76 条
  • [1] Giorgini S(2008)undefined Rev. Mod. Phys. 80 1215-undefined
  • [2] Pitaevskii LP(2008)undefined Rev. Mod. Phys. 80 885-undefined
  • [3] Stringari S(2010)undefined Rev. Mod. Phys. 82 1225-undefined
  • [4] Bloch I(2009)undefined J. Low Temp. Phys. 154 1-undefined
  • [5] Dalibard J(2012)undefined Science 335 563-undefined
  • [6] Zwerger W(2007)undefined Phys. Rev. A 75 023610-undefined
  • [7] Chin C(2011)undefined Science 331 58-undefined
  • [8] Grimm R(2015)undefined Phys. Rev. Lett. 115 020401-undefined
  • [9] Julienne P(2005)undefined Phys. Rev. Lett. 94 111601-undefined
  • [10] Tiesinga E(2014)undefined Phys. Rev. Lett. 113 020406-undefined