We discuss some recent results dealing with the existence of bound states of the nonlinear Schrödinger-Poisson system
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ \begin{gathered} - \Delta u + V(x)u + \lambda K(x)\phi (x)u = |u|^{{p - 1}} u, \hfill \\ - \Delta \phi = K(x)u^{2}, \hfill \\ \end{gathered} \right.$$\end{document} as well as of the corresponding semiclassical limits. The proofs are based upon Critical Point theory and Perturbation Methods.