Integration of a modified double-infinite Toda lattice by using the inverse spectral problem

被引:0
作者
Yu. M. Berezans’kyi
机构
[1] National Academy of Sciences of Ukraine,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2008年 / 60卷
关键词
Cauchy Problem; Spectral Measure; Jacobi Matrice; Toda Lattice; Inverse Spectral Problem;
D O I
暂无
中图分类号
学科分类号
摘要
An approach to finding a solution of the Cauchy problem for a modified double-infinite Toda lattice by using the inverse spectral problem is given.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 33 条
  • [11] Flaschka H.(1987)Integration of Toda chains in the class of Hilbert-Schmidt operators Ukr. Math. J. 39 527-530
  • [12] Zhernakov N. V.(1997)New classes of Toda soliton solutions Commun. Math. Phys. 184 27-50
  • [13] Zhernakov N. V.(1980)The nonabelian Toda lattice-discrete analogue of the matrix Schrödinger spectral problem J. Math. Phys. 21 2749-2753
  • [14] Gesztesy F.(1981)Evolution equations associated with the discrete analog of the matrix Schrödinger spectral problem solvable by the inverse spectral transform J. Math. Phys. 22 2463-2471
  • [15] Renger W.(1988)Group approach to the integration of the infinite Toda chain Ukr. Mat. Zh. 40 518-521
  • [16] Bruschi M.(1949)Infinite Dokl. Akad. Nauk SSSR 69 125-128
  • [17] Manakov S. V.(1990)-matrices and matrix moment problem Ukr. Math. J. 42 645-658
  • [18] Ragnisco O.(2005)Inverse problem of the spectral analysis and non-Abelian chains Meth. Funct. Anal. Top. 11 327-345
  • [19] Levi D.(2006)The direct and inverse spectral problem for the block Jacobi-type unitary matrices Meth. Funct. Anal. Top. 12 1-31
  • [20] Bruschi M.(2008)The complex moment problem and direct and inverse spectral problems for the block Jacobi-type bounded normal matrices Funkts. Anal. Prilozhen. 42 1-21