Integration of a modified double-infinite Toda lattice by using the inverse spectral problem

被引:0
作者
Yu. M. Berezans’kyi
机构
[1] National Academy of Sciences of Ukraine,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2008年 / 60卷
关键词
Cauchy Problem; Spectral Measure; Jacobi Matrice; Toda Lattice; Inverse Spectral Problem;
D O I
暂无
中图分类号
学科分类号
摘要
An approach to finding a solution of the Cauchy problem for a modified double-infinite Toda lattice by using the inverse spectral problem is given.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 33 条
  • [1] Kac M.(1975)On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices Adv. Math. 16 160-169
  • [2] van Moerbeke P.(1975)Three integrable Hamilton systems connected with isospectral deformations Adv. Math. 16 197-220
  • [3] Moser J.(1985)Integration of nonlinear difference equations by the inverse scattering method Dokl. Akad. Nauk SSSR 281 16-19
  • [4] Berezans’kyi Yu. M.(1986)The integration of semi-infinite Toda chain by means of inverse spectral problem Rep. Math. Phys. 24 21-47
  • [5] Berezansky Yu. M.(1981)Periodic non-Abelian Toda chain and its two-dimensional generalization Usp. Mat. Nauk 36 72-80
  • [6] Krichever I. M.(1975)On some periodic Toda lattice Proc. Nat. Acad. Sci. USA 72 2879-2880
  • [7] Kac M.(1974)On complete integrability and stochastization in discrete dynamical media Zh. Éksp. Teor. Fiz. 67 543-555
  • [8] van Moerbeke P.(1974)On the Toda lattice. I Phys. Rev. B 9 1924-1925
  • [9] Manakov S. V.(1974)On the Toda lattice. II Progr. Theor. Phys. 51 703-716
  • [10] Flaschka H.(1986)Direct and inverse problems for a periodic Jacobi matrix Ukr. Math. J. 38 665-668