Covering soft rough sets and its topological properties with application

被引:0
|
作者
Mohammed Atef
Shokry Nada
Ashraf Nawar
机构
[1] Menoufia University,Mathematics and Computer Science Department, Faculty of Science
来源
Soft Computing | 2023年 / 27卷
关键词
Soft neighborhoods; Complementary soft neighborhoods; Covering soft rough; Topological space; Multi-group decision making (MGDM);
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we introduce the notion of the complementary soft neighborhood and present three kinds of covering soft rough set (CSR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CSR}$$\end{document}) models. The basic properties of these models are investigated. The relationships among these models are also discussed. Moreover, we establish the topological approach to CSR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CSR}$$\end{document} say, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-topological spaces (i.e., Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-TS). Hence, the topological properties for Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-TS models such as Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-open sets, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-closed sets, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-interior, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-closure, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-boundary, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-neighborhood and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-limit point are studied and the relationships between them are given. Finally, we make use of an algorithm for these proposed models to deal with uncertainties for solving the MGDM problems using the constructed topologies.
引用
收藏
页码:4451 / 4461
页数:10
相关论文
共 50 条
  • [1] Covering soft rough sets and its topological properties with application
    Atef, Mohammed
    Nada, Shokry
    Nawar, Ashraf
    SOFT COMPUTING, 2023, 27 (08) : 4451 - 4461
  • [2] Soft Covering Based Rough Sets and Their Application
    Yuksel, Saziye
    Ergul, Zehra Guzel
    Tozlu, Naime
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [3] Topological properties in covering-based rough sets
    Zhu, William
    Wang, Fei-Yue
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 289 - +
  • [4] Topological approaches to covering rough sets
    Zhu, William
    INFORMATION SCIENCES, 2007, 177 (06) : 1499 - 1508
  • [5] Topological Properties for Approximation Operators in Covering Based Rough Sets
    Restrepo, Mauricio
    Gomez, Jonatan
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, RSFDGRC 2015, 2015, 9437 : 112 - 123
  • [6] Topological properties of locally finite covering rough sets and K-topological rough set structures
    Han, Sang-Eon
    SOFT COMPUTING, 2021, 25 (10) : 6865 - 6877
  • [7] Topological properties of locally finite covering rough sets and K-topological rough set structures
    Sang-Eon Han
    Soft Computing, 2021, 25 : 6865 - 6877
  • [8] Operation Properties and Algebraic Application of Covering Rough Sets
    Kong, Qingzhao
    Xu, Weihua
    FUNDAMENTA INFORMATICAE, 2018, 160 (04) : 385 - 408
  • [9] Study on covering rough sets with topological methods
    Wang, Xue
    Ma, Liwen
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2019, 4 (03) : 129 - 134
  • [10] Soft rough sets based on covering and their applications
    Mareay, Roshdey
    JOURNAL OF MATHEMATICS IN INDUSTRY, 2024, 14 (01)