Strong solutions for two-phase free boundary problems for a class of non-Newtonian fluids

被引:0
作者
Matthias Hieber
Hirokazu Saito
机构
[1] TU Darmstadt,Department of Mathematics
[2] University of Pittsburgh,607 Benedum Engineering Hall
[3] Waseda University,Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering
来源
Journal of Evolution Equations | 2017年 / 17卷
关键词
Two-phase free boundary problems; non-Newtonian fluids; strong solutions; surface tension; Primary: 35Q35; Secondary: 76D45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the two-phase free boundary problem subject to surface tension and gravitational forces for a class of non-Newtonian fluids with stress tensors Tn of the form Tn=-qI+μn(|D(v)|2)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_n=-qI+\mu_n(|D(v)|^2)D(v)}$$\end{document} for n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n=1,2}$$\end{document}, respectively, where the viscosity functions μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n}$$\end{document} satisfy μn∈C3([0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n\in C^3([0,\infty))}$$\end{document} and μn(0)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu_n(0) > 0}$$\end{document} for n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n=1,2}$$\end{document}. It is shown that for given T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T > 0}$$\end{document} this problem admits a unique strong solution on (0,T) provided the initial data are sufficiently small in their natural norms.
引用
收藏
页码:335 / 358
页数:23
相关论文
共 48 条
  • [1] Abels H.(2007)On generalized solutions of two-phase flows for viscous incompressible fluids Interfaces Free Bound. 9 31-65
  • [2] Abels H.(2014)Existence of weak solutions for a diffusive interface models of Non-Newtonian two-phase flows Nonlinear Analysis Series B 15 149-157
  • [3] Dienig L.(2009)Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids Ann. Inst. H. Poincaré Anal. Non Linéaire 26 2403-2424
  • [4] Terasawa Y.(1994)Stability of the rest state of a viscous incompressible fluid Arch. Rat. Mech. Anal. 126 231-242
  • [5] Abels H.(1996)Stability and bifurcation in viscous incompressible fluids Zapiski Nauchn. Seminar. POMI 233 9-29
  • [6] Röger M.(2011)Solvability of the free boundary value problem of the Navier-Stokes equations Discrete Contin. Dyn. Syst. 29 769-801
  • [7] Amann H.(2007)-theory for a class of non-Newtonian fluids SIAM J. Math. Anal. 39 379-421
  • [8] Amann H.(1991)A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium Proc. Stekhlov Inst. Math. 3 1-24
  • [9] Bae H.(1994)Problem of the motion of two viscous incompressible fluids separated by a closed free interface Acta Appl. Math. 37 31-40
  • [10] Bothe D.(2011)The spin-coating process: analysis of the free boundary value problem Comm. Partial Differential Equations 36 1145-1192