Loop and Path Spaces and¶Four-Dimensional BF Theories:¶Connections, Holonomies and Observables

被引:0
作者
Alberto S. Cattaneo
P. Cotta-Ramusino
M. Rinaldi
机构
[1] Dipartimento di Matematica,
[2] Università di Milano,undefined
[3] Via Saldini 50,undefined
[4] 20133 Milano,undefined
[5] and I.N.F.N.,undefined
[6] Sezione di Milano,undefined
[7] Italy. E-mail: cattaneo@elanor.mat.unimi.it; cotta@mi.infn.it,undefined
[8] Dipartimento di Matematica,undefined
[9] Università di Trieste,undefined
[10] Piazzale Europa 1,undefined
[11] 34127 Trieste,undefined
[12] Italy.¶ E-mail: rinaldi@univ.trieste.it,undefined
来源
Communications in Mathematical Physics | 1999年 / 204卷
关键词
Manifold; Field Theory; Quantum Field Theory; Free Path; Differential Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study the differential geometry of principal G-bundles whose base space is the space of free paths (loops) on a manifold M. In particular we consider connections defined in terms of pairs (A,B), where A is a connection for a fixed principal bundle P(M,G) and B is a 2-form on M. The relevant curvatures, parallel transports and holonomies are computed and their expressions in local coordinates are exhibited. When the 2-form B is given by the curvature of A, then the so-called non-abelian Stokes formula follows.
引用
收藏
页码:493 / 524
页数:31
相关论文
empty
未找到相关数据