On the existence of three solutions of Dirichlet fractional systems involving the p-Laplacian with Lipschitz nonlinearity

被引:0
作者
Rafik Guefaifia
Salah Boulaaras
Fares Kamache
机构
[1] Larbi Tebessi University,Department of Mathematics, Faculty of Exact Sciences
[2] Qassim University,Department of Mathematics, College of Sciences and Arts
[3] University of Oran 1,Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO)
来源
Boundary Value Problems | / 2020卷
关键词
Fractional differential equations; Riemann–Liouville fractional derivatives; Variational methods; Three solutions; -Laplacian; 35J60; 35B30; 35B40; 35J15; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
A class of perturbed fractional nonlinear systems is studied. The dynamical system possesses two control parameters and a Lipschitz nonlinearity order of p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p-1$\end{document}. The multiplicity of the weak solutions is proved by means of the variational method and by Ricceri critical points theorems. An illustrative example is analyzed in order to highlight the obtained result.
引用
收藏
相关论文
共 57 条
  • [1] Boulaaras S.(2020)Existence of 3-weak solutions for a new class of an overdetermined system of fractional partial integro-differential equations Fractals 8 144-174
  • [2] Guefaifia R.(2020)Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters J. Pseudo-Differ. Oper. Appl. 2019 1741-1747
  • [3] Alharbi A.(2019)On the fractional p-Laplacian equations with weight and general datum Adv. Nonlinear Anal. 91 1271-1279
  • [4] Cherif B.(2019)Some existence results of positive solutions for p-Laplacian systems Bound. Value Probl. 95 2521-2529
  • [5] Kamache F.(2012)A new regularity criterion for the nematic liquid crystal fows Appl. Anal. 70 2677-2682
  • [6] Guefaifia R.(2016)Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices Appl. Anal. 6 262-272
  • [7] Boulaaras S.(2009)Integral equations and initial value problems for nonlinear differential equations of fractional order Nonlinear Anal. 12 3232-3238
  • [8] Abdellaoui B.(2008)Basic theory of fractional differential equations Nonlinear Anal. 73 1300-1309
  • [9] Attar A.(2011)A class of fractional evolution equations and optimal controls Nonlinear Anal., Real World Appl. 59 351-362
  • [10] Bentifour R.(2010)Periodic boundary value problems for fractional differential equations involving a Riemann–Liouville fractional derivative Nonlinear Anal. 8 417-427