Non-Abelian topological order and anyons on a trapped-ion processor

被引:58
|
作者
Iqbal, Mohsin [1 ]
Tantivasadakarn, Nathanan [2 ,3 ]
Verresen, Ruben [4 ]
Campbell, Sara L. [5 ]
Dreiling, Joan M. [5 ]
Figgatt, Caroline [5 ]
Gaebler, John P. [5 ]
Johansen, Jacob [5 ]
Mills, Michael [5 ]
Moses, Steven A. [5 ]
Pino, Juan M. [5 ]
Ransford, Anthony [5 ]
Rowe, Mary [5 ]
Siegfried, Peter [5 ]
Stutz, Russell P. [5 ]
Foss-Feig, Michael [5 ]
Vishwanath, Ashvin [4 ]
Dreyer, Henrik [1 ]
机构
[1] Quantinuum, Munich, Germany
[2] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA USA
[3] CALTECH, Dept Phys, Pasadena, CA USA
[4] Harvard Univ, Dept Phys, Cambridge, MA USA
[5] Quantinuum, Broomfield, CO USA
关键词
QUANTUM COMPUTATION; STATISTICS; STATE;
D O I
10.1038/s41586-023-06934-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-Abelian topological order is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged1-4. These anyonic excitations are promising building blocks of fault-tolerant quantum computers5,6. However, despite extensive efforts, non-Abelian topological order and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian topological order. Here we present the realization of non-Abelian topological order in the wavefunction prepared in a quantum processor and demonstrate control of its anyons. Using an adaptive circuit on Quantinuum's H2 trapped-ion quantum processor, we create the ground-state wavefunction of D4 topological order on a kagome lattice of 27 qubits, with fidelity per site exceeding 98.4 per cent. By creating and moving anyons along Borromean rings in spacetime, anyon interferometry detects an intrinsically non-Abelian braiding process. Furthermore, tunnelling non-Abelions around a torus creates all 22 ground states, as well as an excited state with a single anyon-a peculiar feature of non-Abelian topological order. This work illustrates the counterintuitive nature of non-Abelions and enables their study in quantum devices. A trapped-ion quantum processor is used to create ground-states and excitations of non-Abelian topological order on a kagome lattice of 27 qubits with high fidelity.
引用
收藏
页码:505 / 511
页数:18
相关论文
共 50 条
  • [1] Splitting the Topological Degeneracy of Non-Abelian Anyons
    Bonderson, Parsa
    PHYSICAL REVIEW LETTERS, 2009, 103 (11)
  • [2] Non-Abelian anyons and topological quantum computation
    Nayak, Chetan
    Simon, Steven H.
    Stern, Ady
    Freedman, Michael
    Das Sarma, Sankar
    REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1083 - 1159
  • [3] Shortest Route to Non-Abelian Topological Order on a Quantum Processor
    Tantivasadakarn, Nathanan
    Verresen, Ruben
    Vishwanath, Ashvin
    PHYSICAL REVIEW LETTERS, 2023, 131 (06)
  • [4] Non-Abelian braiding of Fibonacci anyons with a superconducting processor
    Xu, Shibo
    Sun, Zheng-Zhi
    Wang, Ke
    Li, Hekang
    Zhu, Zitian
    Dong, Hang
    Deng, Jinfeng
    Zhang, Xu
    Chen, Jiachen
    Wu, Yaozu
    Zhang, Chuanyu
    Jin, Feitong
    Zhu, Xuhao
    Gao, Yu
    Zhang, Aosai
    Wang, Ning
    Zou, Yiren
    Tan, Ziqi
    Shen, Fanhao
    Zhong, Jiarun
    Bao, Zehang
    Li, Weikang
    Jiang, Wenjie
    Yu, Li-Wei
    Song, Zixuan
    Zhang, Pengfei
    Xiang, Liang
    Guo, Qiujiang
    Wang, Zhen
    Song, Chao
    Wang, H.
    Deng, Dong-Ling
    NATURE PHYSICS, 2024, 20 (09) : 1469 - 1475
  • [5] Introduction to topological quantum computation with non-Abelian anyons
    Field, Bernard
    Simula, Tapio
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (04):
  • [6] Nonadiabatic effects in the braiding of non-Abelian anyons in topological superconductors
    Cheng, Meng
    Galitski, Victor
    Das Sarma, S.
    PHYSICAL REVIEW B, 2011, 84 (10)
  • [7] Interferometry of non-Abelian anyons
    Bonderson, Parsa
    Shtengel, Kirill
    Slingerland, J. K.
    ANNALS OF PHYSICS, 2008, 323 (11) : 2709 - 2755
  • [8] Quantum Walks with Non-Abelian Anyons
    Lehman, Lauri
    Zatloukal, Vaclav
    Brennen, Gavin K.
    Pachos, Jiannis K.
    Wang, Zhenghan
    PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [9] Entanglement spectrum of non-Abelian anyons
    Wu, Ying-Hai
    CHINESE PHYSICS B, 2022, 31 (03)
  • [10] Interferometric signature of non-Abelian anyons
    Bishara, Waheb
    Bonderson, Parsa
    Nayak, Chetan
    Shtengel, Kirill
    Slingerland, J. K.
    PHYSICAL REVIEW B, 2009, 80 (15):