A note on skew linear groups of finite rank

被引:0
作者
Le Van Chua
Mai Hoang Bien
Bui Xuan Hai
机构
[1] University of Science,Faculty of Mathematics and Computer Science
[2] Vietnam National University,undefined
[3] An Giang University,undefined
来源
Archiv der Mathematik | 2022年 / 119卷
关键词
Finite rank; Locally solvable group; Skew linear group; Locally finite division ring.; 20E34; 20E25; 20F19; 16K20; 16K40;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this note is to investigate the structure of skew linear groups of finite rank. Among our results, it is proved that a subgroup G of GLn(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {GL}_n(D)$$\end{document} has finite rank if and only if there exists a solvable normal subgroup N in G of finite rank such that the factor group G/N is finite provided D is a locally finite division ring which is not necessarily commutative.
引用
收藏
页码:113 / 120
页数:7
相关论文
共 23 条
  • [1] Brandl R(1990)On the Wielandt subgroup of infinite soluble groups Glasgow Math. J. 32 121-125
  • [2] Franciosi S(2007)On some ranks of infinite groups Ric. Math. 56 43-59
  • [3] de Giovanni F(1996)Locally (solvable-by-finite) groups of finite rank J. Algebra 182 756-769
  • [4] Dixon MR(1962)On soluble groups of finite rank Algebra i Logika 1 37-44
  • [5] Kurdachenko LA(1989)Free groups in normal subgroups of unit groups and arithmetic groups Contemp. Math. 93 173-177
  • [6] Polyakov NV(1989)Residually finite groups of finite rank Math. Proc. Cambridge Philos. Soc. 106 385-388
  • [7] Dixon MR(2000)Finitely generated subnormal subgroups of J. Algebra 225 517-521
  • [8] Evan MJ(1948)On groups of finite rank Mat. Sbornik N.S. 22 350-352
  • [9] Smith H(1964)On locally soluble groups of finite rank Algebra i Logika 3 5-16
  • [10] Kargapolov MI(1969)On a problem of Mal‘cev Mat. Sbornik N.S. 79 621-624