Random Walks with Local Memory

被引:0
作者
Swee Hong Chan
Lila Greco
Lionel Levine
Peter Li
机构
[1] UCLA,Department of Mathematics
[2] Berkshire Hathaway Specialty Insurance,Department of Mathematics
[3] Cornell University,Department of Economics
[4] New York University,undefined
来源
Journal of Statistical Physics | 2021年 / 184卷
关键词
Random walk; Random environment; Rotor walk; Rotor-router; Uniform spanning forest; Wired spanning forest; Stationary distribution; Scaling limit; Brownian motion; 60G42; 60F17; 60G10; 60J10; 60J65; 60K37; 82C41;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a quenched invariance principle for a class of random walks in random environment on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document}, where the walker alters its own environment. The environment consists of an outgoing edge from each vertex. The walker updates the edge e at its current location to a new random edge e′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e'$$\end{document} (whose law depends on e) and then steps to the other endpoint of e′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e'$$\end{document}. We show that a native environment for these walks (i.e., an environment that is stationary in time from the perspective of the walker) consists of the wired uniform spanning forest oriented toward the walker, plus an independent outgoing edge from the walker.
引用
收藏
相关论文
共 47 条
[1]  
Aldous DJ(1990)The random walk construction of uniform spanning trees and uniform labelled trees SIAM J. Discret. Math. 3 450-465
[2]  
Bercu B(2019)On the multi-dimensional elephant random walk J. Stat. Phys. 175 1146-1163
[3]  
Laulin L(2001)Uniform spanning forests Ann. Probab. 29 1-65
[4]  
Benjamini I(2007)Central limit theorem for the excited random walk in dimension Electron. Commun. Probab. 12 303-314
[5]  
Lyons R(2003)Excited random walk Electron. Commun. Probab. 8 86-92
[6]  
Peres Y(2016)The range of a rotor walk Amer. Math. Monthly 123 627-642
[7]  
Schramm O(1998)Ergodic theorems and ergodic decomposition for Markov chains Acta Appl. Math. 54 99-119
[8]  
Bérard J(2018)Interpolating between random walk and rotor walk Rand. Struct. Algorithms 52 263-282
[9]  
Ramírez AF(2019)The component graph of the uniform spanning forest: transitions in dimensions 9,10,11 Probab. Theory Relat. Fields 175 141-208
[10]  
Benjamini I(2018)Interlacements and the wired uniform spanning forest Ann. Probab. 46 1170-1200