Maximal γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma}$$\end{document}-regularity

被引:0
|
作者
Jan van Neerven
Mark Veraar
Lutz Weis
机构
[1] Delft University of Technology,Delft Institute of Applied Mathematics
[2] Universität Karlsruhe (TH),Institut für Analysis
关键词
Maximal regularity; Evolution equations; Stochastic convolution; -boundedness; -functional calculus; -spaces;
D O I
10.1007/s00028-014-0264-0
中图分类号
学科分类号
摘要
In this paper, we prove maximal regularity estimates in “square function spaces” which are commonly used in harmonic analysis, spectral theory, and stochastic analysis. In particular, they lead to a new class of maximal regularity results for both deterministic and stochastic equations in Lp-spaces with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 < p < {\infty} }$$\end{document}. For stochastic equations, the case 1 < p < 2 was not covered in the literature so far. Moreover, the “square function spaces” allow initial values with the same roughness as in the L2-setting.
引用
收藏
页码:361 / 402
页数:41
相关论文
共 50 条