Multiplicity of positive periodic solutions to nonlinear boundary value problems with a parameter

被引:1
作者
Zhu H. [1 ]
Li S. [2 ]
机构
[1] School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu
[2] College of Information Sciences and Technology, Hainan University, Haikou
基金
中国国家自然科学基金;
关键词
Krasnosel’skii’s fixed point theorem; Leray-Schauder alternative principle; Multiplicity; Periodic solution;
D O I
10.1007/s12190-015-0902-x
中图分类号
学科分类号
摘要
We study the existence and multiplicity of positive periodic solutions for second order differential equations with a parameter. In this class of problems, we are mainly concerned with the semi-positone case. Our methods are based on the nonlinear alternative principle of Leray-Schauder and Krasnosel’skii’s fixed point theorem in cones. Analytical results are illustrated by means of numerical experiments. © Korean Society for Computational and Applied Mathematics 2015.
引用
收藏
页码:245 / 256
页数:11
相关论文
共 23 条
[1]  
Agarwal R.P., O'Regan D., Yan B., Multiple positive solutions of singular Dirichlet second-order boundary-value problems with derivative dependence, J. Dyn. Control Syst, 15, pp. 1-26, (2009)
[2]  
Alber M.S., Camassa R., Holm D., Marsden J.E., The geometry of peaked solitons of a class of integrable PDE’s, Lett. Math. Phys, 32, pp. 37-151, (1994)
[3]  
Cabada A., Cid J., Existence andmultiplicity of solutions for a periodicHill’s equationwith parametric dependence and singularities, Abstr. Appl. Anal, (2011)
[4]  
Cabada A., Nieto J.J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput, 40, pp. 135-145, (1990)
[5]  
Camassa R., Holm D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett, 71, pp. 1661-1664, (1993)
[6]  
Constantin A., On the spectral problem for the periodic Camassa-Holm equation, J. Math. Anal. Appl, 210, pp. 215-230, (1997)
[7]  
Feichtinger A., Rachunkova I., Stanek S., Weinmuller E., Periodic BVPs in ODEs with time singularities, Comput. Math. Appl., 62, pp. 2058-2070, (2011)
[8]  
Graef J.R., Kong L., Wang H., Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. Differ. Equ., 245, pp. 1185-1197, (2008)
[9]  
Hao X., Liu L., Wu Y., Existence and multiplicity results for nonlinear periodic boundary value problems, Nonlinear Anal, 72, pp. 3635-3642, (2010)
[10]  
He T., Yang F., Chena C., Peng S., Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter, Comput. Math. Appl, 61, pp. 3355-3363, (2011)