Emptiness Formation Probability

被引:0
|
作者
Nicholas Crawford
Stephen Ng
Shannon Starr
机构
[1] The Technion,Department of Mathematics
[2] University of Rochester,Department of Mathematics
[3] University of Alabama at Birmingham,Department of Mathematics
来源
Communications in Mathematical Physics | 2016年 / 345卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order exp(-cLd+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\exp(-c L^{d+1})}$$\end{document} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d=1}$$\end{document} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d \geq 2}$$\end{document} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.
引用
收藏
页码:881 / 922
页数:41
相关论文
共 50 条