Spatial-temporal attention network for multistep-ahead forecasting of chlorophyll

被引:0
|
作者
Xiaoyu He
Suixiang Shi
Xiulin Geng
Lingyu Xu
Xiaolin Zhang
机构
[1] Shanghai University,School of Computer Engineering and Science
[2] National Marine Data and Information Service,Key Laboratory of Digital Ocean
[3] Inner Mongolia University of Science and Technology,School of Information Engineering
来源
Applied Intelligence | 2021年 / 51卷
关键词
Attention mechanism; Neural network; Spatial-temporal correlation network; Multistep-ahead forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
The multistep-ahead prediction of chlorophyll provides an effective means for early warning of red tide. However, since multistep-ahead forecasting presents challenges, such as vague interactive relationships among ocean factors, long-term dependence modeling, and accumulative errors, existing methods mostly concentrate on the current time or one-step-ahead forecasting. In this paper, a hierarchical multistep-ahead forecasting model spatial-temporal attention network(STAN), which integrates the spatial context extractor network(SCE-net), long short-term memory network(LSTM), and the temporal attention mechanism, is proposed for the prediction of chlorophyll. In STAN, the input layer utilizes SCE-net to excavate relationships among ocean factors and generate high-level semantic via embedding factors into a continuous low-dimensional space. The middle layer applies LSTM to build the long-term dependencies of corresponding semantic representations. The output layer uses another LSTM with temporal attention to reduce accumulative errors and maintain temporal continuity. The attention can assign different weights to the middle layer’s hidden state and generate a context vector. Then the context vector and the final predicted value are considered as the current input for better forecasting. The buoy observation data of the Xiamen coastal area monitored in 2009–2011 is used to verify the efficiency of STAN. Experimental results prove that STAN outperforms the state-of-the-art methods of multistep-ahead prediction. When using 7 observation steps to forecast 15 steps, the MAPE of STAN is 0.3209, and the MAE is 0.1 lower than the values of the baselines approaches.
引用
收藏
页码:4381 / 4393
页数:12
相关论文
共 50 条
  • [21] Attention-Based Spatial-Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Yin, Conghui
    Xiao, Peng
    Li, Kelei
    Tan, Meifang
    ENTROPY, 2023, 25 (06)
  • [22] Graph Convolution Based Spatial-Temporal Attention LSTM Model for Flood Forecasting
    Feng, Jun
    Sha, Haichao
    Ding, Yukai
    Yan, Le
    Yu, Zhangheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [24] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29) : 21827 - 21839
  • [25] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [26] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [27] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [28] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [29] Spatial-Temporal Attention Network for Depression Recognition from facial videos
    Pan, Yuchen
    Shang, Yuanyuan
    Liu, Tie
    Shao, Zhuhong
    Guo, Guodong
    Ding, Hui
    Hu, Qiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [30] Recurrent attention network using spatial-temporal relations for action recognition
    Zhang, Mingxing
    Yang, Yang
    Ji, Yanli
    Xie, Ning
    Shen, Fumin
    SIGNAL PROCESSING, 2018, 145 : 137 - 145