Comparison Theorems on Convex Hypersurfaces in Hadamard Manifolds

被引:0
作者
Alexandr A. Borisenko
Vicente Miquel
机构
[1] Kharkov National University,Geometry Department, Math.
[2] Universidad de Valencia,Mech. Faculty
来源
Annals of Global Analysis and Geometry | 2002年 / 21卷
关键词
circumradius; convex domain; Hadamard manifold; hyperbolic space; inradius; -th curvature;
D O I
暂无
中图分类号
学科分类号
摘要
In a Hadamard manifold with sectional curvaturebounded from below by −k22, we give sharp upper estimates for the difference circumradius minus inradiusof a compact k2-convex domain, and we getalso estimates for the quotient (Total d-mean curvature)/Area of a convex domain.
引用
收藏
页码:191 / 202
页数:11
相关论文
共 50 条
  • [11] A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifolds
    Zhi Zhao
    Qin Zeng
    Yu-Nong Xu
    Ya-Guan Qian
    Teng-Teng Yao
    Numerical Algorithms, 2023, 93 : 1209 - 1223
  • [12] A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifolds
    Zhao, Zhi
    Zeng, Qin
    Xu, Yu-Nong
    Qian, Ya-Guan
    Yao, Teng-Teng
    NUMERICAL ALGORITHMS, 2023, 93 (03) : 1209 - 1223
  • [13] Horospheres and hyperbolicity of Hadamard manifolds
    Itoh, Mitsuhiro
    Satoh, Hiroyasu
    Suh, Young Jin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 50 - 68
  • [14] Vector variational inequalities on Hadamard manifolds involving strongly geodesic convex functions
    Jayswal, Anurag
    Ahmad, Izhar
    Kumari, Babli
    OPERATIONS RESEARCH LETTERS, 2019, 47 (02) : 110 - 114
  • [15] The hyperbolic rank of homogeneous Hadamard manifolds
    Thomas Foertsch
    manuscripta mathematica, 2002, 109 : 109 - 120
  • [16] A derivative free projection method for the singularities of vector fields with convex constraints on Hadamard manifolds
    Sahu, D. R.
    Sharma, Shikher
    OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [17] A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds
    Li-wen Zhou
    Nan-jing Huang
    Journal of Optimization Theory and Applications, 2019, 182 : 1186 - 1198
  • [18] SOME CHARACTERIZATIONS FOR THE SOLUTION SETS OF PSEUDOAFFINE PROGRAMS, CONVEX PROGRAMS AND VARIATIONAL INEQUALITIES ON HADAMARD MANIFOLDS
    Li, Xiao-Bo
    Xiao, Yi-Bin
    Huang, Nan-Jing
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (02): : 307 - 325
  • [19] Product of Resolvents on Hadamard Manifolds
    Ahmadi, Fatemeh
    Ahmadi, Parviz
    Khatibzadeh, Hadi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [20] On the Spectrum of Certain Hadamard Manifolds
    Ballmann, Werner
    Mukherjee, Mayukh
    Polymerakis, Panagiotis
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19