Transmission dynamics for vector-borne diseases in a patchy environment

被引:0
作者
Yanyu Xiao
Xingfu Zou
机构
[1] University of Western Ontario,Department of Applied Mathematics
来源
Journal of Mathematical Biology | 2014年 / 69卷
关键词
Vector-borne diseases; Patch; Dispersal; Latency; Basic reproduction number; Non-local infection; Persistence; 34K20; 34K25; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a mathematical model is derived to describe the transmission and spread of vector-borne diseases over a patchy environment. The model incorporates into the classic Ross–MacDonald model two factors: disease latencies in both hosts and vectors, and dispersal of hosts between patches. The basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0$$\end{document} is identified by the theory of the next generation operator for structured disease models. The dynamics of the model is investigated in terms of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0$$\end{document}. It is shown that the disease free equilibrium is asymptotically stable if R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0<1$$\end{document}, and it is unstable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0>1$$\end{document}; in the latter case, the disease is endemic in the sense that the variables for the infected compartments are uniformly persistent. For the case of two patches, more explicit formulas for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0$$\end{document} are derived by which, impacts of the dispersal rates on disease dynamics are also explored. Some numerical computations for R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0$$\end{document} in terms of dispersal rates are performed which show visually that the impacts could be very complicated: in certain range of the parameters, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }_0$$\end{document} is increasing with respect to a dispersal rate while in some other range, it can be decreasing with respect to the same dispersal rate. The results can be useful to health organizations at various levels for setting guidelines or making policies for travels, as far as malaria epidemics is concerned.
引用
收藏
页码:113 / 146
页数:33
相关论文
共 48 条
[1]  
Arino J(2005)A multi-species epidemic model with spatial dynamics Math Med Biol 22 129-142
[2]  
Davis JR(2008)The Ross–Macdonald model in a patchy environment Math Biosci 261 123-131
[3]  
Hartley D(2011)Analysis of a vector-bias model on malaria Bull Math Biol 73 639-657
[4]  
Jordan R(2008)Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model Bull Math Biol 70 1272-1296
[5]  
Miller JM(2009)The effects of human movement on the persistence of vector-borne diseases J Therm Biol 258 550-560
[6]  
van den Driessche P(2012)A multipatch malaria model with logistic growth populations SIAM J Appl Math 72 819-841
[7]  
Auger P(2010)Dynamics of an epidemic model with non-local infections for diseases with latency over a patch environment J Math Biol 60 645-686
[8]  
Kouokam E(2009)Generalization of the Kermack–McKendrick SIR model to patch environment for a disease with latency Math Model Natl Phenom 4 92-118
[9]  
Sallet G(2010)The periodic Ross–Macdonald model with diffusion and advection Appl Anal 89 1067-1089
[10]  
Tchuenche M(2011)A reaction–diffusion malaria model with incubation period in the vector population J Math Biol 62 543-568