Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction

被引:96
作者
Arbore C. [1 ]
Perego L. [1 ]
Sergides M. [1 ]
Capitanio M. [1 ,2 ]
机构
[1] LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino
[2] Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino
基金
欧盟地平线“2020”;
关键词
adhesion; cell mechanics; force spectroscopy; mechanotransduction; molecular motors; optical tweezers;
D O I
10.1007/s12551-019-00599-y
中图分类号
学科分类号
摘要
The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease. © 2019, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:765 / 782
页数:17
相关论文
共 113 条
[91]  
Dekan Melanie S., Co-Referent M.B.R.M.B., Nienhaus U., Multiple Trap Optical Tweezers for Cell Force Measurements, (2012)
[92]  
Schwingel M., Bastmeyer M., Force mapping during the formation and maturation of cell adhesion sites with multiple optical tweezers, PLoS One, (2013)
[93]  
Sheetz M.P., Cell control by membrane-cytoskeleton adhesion, Nat Rev Mol Cell Biol, 2, 5, pp. 392-396, (2001)
[94]  
Shergill B., Meloty-Kapella L., Musse A.A., Weinmaster G., Botvinick E., Optical tweezers studies on notch: single-molecule interaction strength is independent of ligand endocytosis, Dev Cell, 22, 6, pp. 1313-1320, (2012)
[95]  
Shubeita G.T., Tran S.L., Xu J., Vershinin M., Cermelli S., Cotton S.L., Welte M.A., Gross S.P., Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets, Cell, 135, 6, pp. 1098-1107, (2008)
[96]  
Sims P.A., Xie X.S., Probing dynein and kinesin stepping with mechanical manipulation in a living cell, Chemphyschem, 10, 9-10, pp. 1511-1516, (2009)
[97]  
Simunovic M., Manneville J.-B., Renard H.-F., Evergren E., Raghunathan K., Bhatia D., Kenworthy A.K., Voth G.A., Prost J., McMahon H.T., Johannes L., Bassereau P., Callan-Jones A., Friction mediates scission of tubular membranes scaffolded by BAR proteins, Cell, 170, 1, pp. 172-184.e11, (2017)
[98]  
Sleep J., Wilson D., Simmons R., Gratzer W., Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study, Biophys J, 77, 6, pp. 3085-3095, (1999)
[99]  
Suresh S., Spatz J., Mills J.P., Micoulet A., Dao M., Lim C.T., Beil M., Seufferlein T., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomater, 1, 1, pp. 15-30, (2005)
[100]  
Svoboda K., Schmidt C.F., Branton D., Block S.M., Conformation and elasticity of the isolated red blood cell membrane skeleton, Biophys J, 63, 3, pp. 784-793, (1992)