Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction

被引:96
作者
Arbore C. [1 ]
Perego L. [1 ]
Sergides M. [1 ]
Capitanio M. [1 ,2 ]
机构
[1] LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino
[2] Department of Physics and Astronomy, University of Florence, Via Sansone 1, Sesto Fiorentino
基金
欧盟地平线“2020”;
关键词
adhesion; cell mechanics; force spectroscopy; mechanotransduction; molecular motors; optical tweezers;
D O I
10.1007/s12551-019-00599-y
中图分类号
学科分类号
摘要
The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease. © 2019, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:765 / 782
页数:17
相关论文
共 113 条
[1]  
Abbondanzieri E.A., Greenleaf W.J., Shaevitz J.W., Landick R., Block S.M., Direct observation of base-pair stepping by RNA polymerase, Nature, 438, 7067, pp. 460-465, (2005)
[2]  
Agrawal R., Smart T., Nobre-Cardoso J., Richards C., Bhatnagar R., Tufail A., Shima D., Jones P.H., Pavesio C., Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique, Sci Rep, 6, May 2015, pp. 1-12, (2016)
[3]  
Almonacid M., Ahmed W.W., Bussonnier M., Mailly P., Betz T., Voituriez R., Gov N.S., Verlhac M.-H., Active diffusion positions the nucleus in mouse oocytes, Nat Cell Biol, 17, 4, pp. 470-479, (2015)
[4]  
Arya M.B., Anvari G.M., Romo M.A., Cruz J.-F., Dong L.V., McIntire J.L., Moakelopez J.A., Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: Studies using optical tweezers, (2002)
[5]  
Arya M., Kolomeisky A.B., Romo G.M., Cruz M., Lopez J., Anvari B., Dynamic force spectroscopy of glycoprotein Ib-IX and von Willebrand factor, Biophys J, 88, 6, pp. 4391-4401, (2005)
[6]  
Ashkin A., Acceleration and trapping of particles by radiation pressure, Phys Rev Lett, 24, 4, pp. 156-159, (1970)
[7]  
Ashkin A., Dziedzic J.M., Optical levitation by radiation pressure, Appl Phys Lett, 19, 8, pp. 283-285, (1971)
[8]  
Ashkin A., Dziedzic J.M., Internal cell manipulation using infrared laser traps, Proc Natl Acad Sci U S A, 86, 20, pp. 7914-7918, (1989)
[9]  
Ashkin A., Dziedzik J.M., Bjorkholm J.E., Chu S., Observation of a single-beam gradient force optical trap for dielectric particles, Opt Lett, 11, 5, pp. 288-290, (1986)
[10]  
Ashkin A., Karin S., Dziedzic J.M., Euteneuer U., Schliwa M., Force generation of organelle transport measured in vivo by an infrared laser trap, Nature, 348, 6299, pp. 346-348, (1990)