Elements with bounded height in number fields

被引:0
作者
A. Pethő
S. Schmitt
机构
[1] University of Debrecen,Institute of Mathematics and Informatics
[2] Universität des Saarlandes,FB Mathematik
关键词
Elliptic Curf; Number Field; Constructive Proof;
D O I
10.1023/A:1015225430108
中图分类号
学科分类号
摘要
We give a constructive proof of the fact that there exist only finitely many elements with bounded height in number fields. This provides an eficient method to enumerate all those elements. Such a method is helpful to compute bases on elliptic curves.
引用
收藏
页码:31 / 41
页数:10
相关论文
共 10 条
[1]  
Buchmann J.(1989)Computation of independent units in number fields by Dirichlet's method Math. Comput. 52 149-159
[2]  
PethŐ A.(1999)Computing the rank of elliptic curves over real quadratic number fields of class number 1 Math. Comput. 68 1187-1200
[3]  
Cremona J.(1982)Factoring polynomials with rational coeficients Math. Ann. 261 515-534
[4]  
Serf P.(1971)Cyclotomic fields and modular curves Russian Math. Surveys 26 7-78
[5]  
Lenstra A. K.(1982)On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields J. Number Theory 14 99-117
[6]  
Lenstra H. W.(1995)Infinite descent on elliptic curves Rocky Mountain J. Math. 25 1501-1538
[7]  
LovÁsz L.(undefined)undefined undefined undefined undefined-undefined
[8]  
Manin Y. I.(undefined)undefined undefined undefined undefined-undefined
[9]  
Pohst M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Siksek S.(undefined)undefined undefined undefined undefined-undefined