Local nonlinear unknown input observer

被引:4
作者
Messaoud R.B. [1 ]
Ksouri M. [1 ]
机构
[1] Department of Electrical Engineering, National Engineering School of Tunis, 1002 Tunis
来源
Messaoud, R. B. (ramzibenmessaoud@gmail.com) | 1600年 / South China University of Technology卷 / 11期
关键词
Nonlinear systems; Robust and state estimation; Stability; Unknown inputs observers;
D O I
10.1007/s11768-013-2122-y
中图分类号
学科分类号
摘要
This paper proposes a new nonlinear unknown input observer. The observer design approach utilizes the first order Taylor expansion. The observer gains are then obtained by a systematic method. In this paper, we added some improvements to this method. The developed approach also can enable observer design for a large class of differentiable nonlinear systems. The necessary and sufficient conditions for the existence of the observer are given. A numerical example is given to illustrate the attractiveness and the simplicity of the new design procedure. © 2013 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:517 / 520
页数:3
相关论文
共 13 条
[1]  
Luenberger D.G., An introduction to observers, IEEE Transactions on Automatic Control, 16, 6, pp. 596-602, (1971)
[2]  
Darouach M., Zasadzinski M., Xu S., Observers for linear systems with unknown inputs, IEEE Transactions on Automatic Control, 39, 3, pp. 607-609, (1994)
[3]  
Zhao Y., Tao J., Shi N., A note on observer design for one-sided Lipschitz nonlinear systems, Systems & Control Letters, 59, 1, pp. 66-71, (2010)
[4]  
Chen H., The Bounded Jacobian Approach to Nonlinear Observer Design, (2002)
[5]  
Abbaszadeh M., Marquez H.J., Nonlinear observer design for one-sided Lipschitz systems, Proceedings of the American Control Conference, pp. 5284-5289, (2010)
[6]  
Bongsob S., Karl J., Nonlinear observer design for Lipschitz nonlinear systems, Proceedings of the American Control Conference, pp. 2578-2583, (2011)
[7]  
Farza M., M'Saada M., Triki M., Et al., High gain observer for a class of non-triangular systems, Systems & Control Letters, 60, 1, pp. 27-35, (2011)
[8]  
Barbot P.J., Boutat D., Floquet T., An observation algorithm for nonlinear systems with unknown inputs, Automatica, 45, 8, pp. 1970-1974, (2009)
[9]  
Chen W., Saif M., Unknown input observer design for a class of nonlinear systems an LMI approach, Proceedings of the American Control Conference, pp. 834-838, (2006)
[10]  
Chen M., Chen C., Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances, IEEE Transactions on Automatic Control, 52, 12, pp. 2365-2369, (2007)