Investigation of some Sylvester-type quaternion matrix equations with multiple unknowns

被引:6
作者
Zhang, Chong-Quan [1 ,2 ]
Wang, Qing-Wen [1 ,2 ]
Dmytryshyn, Andrii [3 ]
He, Zhuo-Heng [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
[3] Orebro Univ, Sch Sci & Technol, Orebro, Sweden
基金
中国国家自然科学基金;
关键词
Linear matrix equation; Inner inverse; General solution; Quaternion; Solvability; NONNEGATIVE-DEFINITE; AX; SYSTEMS; AXB+CYD;
D O I
10.1007/s40314-024-02706-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the solvability conditions of some Sylvester-type quaternion matrix equations. We establish some practical necessary and sufficient conditions for the existence of solutions of a Sylvester-type quaternion matrix equation with five unknowns through the corresponding equivalence relations of the block matrices. Moreover, we present some solvability conditions to some Sylvester-type quaternion matrix equations, including those involving Hermicity. The findings of this article extend related known results.
引用
收藏
页数:26
相关论文
共 43 条
  • [1] MATRIX EQUATION AX-YB=C
    BAKSALARY, JK
    KALA, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 25 (01) : 41 - 43
  • [2] THE MATRIX EQUATION AXB + CYD=E
    BAKSALARY, JK
    KALA, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 30 (APR) : 141 - 147
  • [3] Baksalary JK., 1984, Linear Multilinear Algebra, V16, P133, DOI [10.1080/03081088408817616, DOI 10.1080/03081088408817616]
  • [4] Chen XY, 2023, BANACH J MATH ANAL, V17, DOI 10.1007/s43037-023-00262-5
  • [5] Dual Quaternion Matrix Equation AXB = C with Applications
    Chen, Yan
    Wang, Qing-Wen
    Xie, Lv-Ming
    [J]. SYMMETRY-BASEL, 2024, 16 (03):
  • [6] Positive and real-positive solutions to the equation axa* = c in C*-algebras
    Cvetkovic-Ilic, D.
    Dajic, Alegra
    Koliha, J. J.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) : 535 - 543
  • [7] Algebraic conditions for the solvability to some systems of matrix equations
    Cvetkovic-Ilic, D. S.
    Radenkovic, J. Nikolov
    Wang, Qing-Wen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09) : 1579 - 1609
  • [8] Uniqueness of solution of a generalized ☆-Sylvester matrix equation
    De Teran, Fernando
    Iannazzo, Bruno
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 323 - 335
  • [9] The solution of the equation AX plus BX☆=0
    De Teran, Fernando
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (12) : 1605 - 1628
  • [10] The solution of the equation AX plus X☆B=0
    De Teran, Fernando
    Dopico, Froilan M.
    Guillery, Nathan
    Montealegre, Daniel
    Reyes, Nicolas
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) : 2817 - 2860