Investigation of some Sylvester-type quaternion matrix equations with multiple unknowns

被引:8
作者
Zhang, Chong-Quan [1 ,2 ]
Wang, Qing-Wen [1 ,2 ]
Dmytryshyn, Andrii [3 ]
He, Zhuo-Heng [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
[3] Orebro Univ, Sch Sci & Technol, Orebro, Sweden
基金
中国国家自然科学基金;
关键词
Linear matrix equation; Inner inverse; General solution; Quaternion; Solvability; NONNEGATIVE-DEFINITE; AX; SYSTEMS; AXB+CYD;
D O I
10.1007/s40314-024-02706-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the solvability conditions of some Sylvester-type quaternion matrix equations. We establish some practical necessary and sufficient conditions for the existence of solutions of a Sylvester-type quaternion matrix equation with five unknowns through the corresponding equivalence relations of the block matrices. Moreover, we present some solvability conditions to some Sylvester-type quaternion matrix equations, including those involving Hermicity. The findings of this article extend related known results.
引用
收藏
页数:26
相关论文
共 43 条
[1]   MATRIX EQUATION AX-YB=C [J].
BAKSALARY, JK ;
KALA, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 25 (01) :41-43
[2]   THE MATRIX EQUATION AXB + CYD=E [J].
BAKSALARY, JK ;
KALA, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 30 (APR) :141-147
[3]  
Baksalary JK., 1984, Linear Multilinear Algebra, V16, P133, DOI [10.1080/03081088408817616, DOI 10.1080/03081088408817616]
[4]  
Chen XY, 2023, BANACH J MATH ANAL, V17, DOI 10.1007/s43037-023-00262-5
[5]   Dual Quaternion Matrix Equation AXB = C with Applications [J].
Chen, Yan ;
Wang, Qing-Wen ;
Xie, Lv-Ming .
SYMMETRY-BASEL, 2024, 16 (03)
[6]   Positive and real-positive solutions to the equation axa* = c in C*-algebras [J].
Cvetkovic-Ilic, D. ;
Dajic, Alegra ;
Koliha, J. J. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) :535-543
[7]   Algebraic conditions for the solvability to some systems of matrix equations [J].
Cvetkovic-Ilic, D. S. ;
Radenkovic, J. Nikolov ;
Wang, Qing-Wen .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09) :1579-1609
[8]   Uniqueness of solution of a generalized ☆-Sylvester matrix equation [J].
De Teran, Fernando ;
Iannazzo, Bruno .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 :323-335
[9]   The solution of the equation AX plus BX☆=0 [J].
De Teran, Fernando .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (12) :1605-1628
[10]   The solution of the equation AX plus X☆B=0 [J].
De Teran, Fernando ;
Dopico, Froilan M. ;
Guillery, Nathan ;
Montealegre, Daniel ;
Reyes, Nicolas .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) :2817-2860