On functorial (co)localization of algebras and modules over operads

被引:0
作者
Javier J. Gutiérrez
Oliver Röndigs
Markus Spitzweck
Paul Arne Østvær
机构
[1] Universitat de Barcelona,Departament de Matemàtiques i Informàtica
[2] Universität Osnabrück,Institut für Mathematik
[3] University of Oslo,Department of Mathematics
[4] University of Milan,Department of Mathematics “F. Enriques”
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2021年 / 91卷
关键词
Colored operads; (co)localization functors; Motivic stable homotopy theory; 18M60; 18N40; 55P43; 14F42;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by calculations of motivic homotopy groups, we give widely attained conditions under which operadic algebras and modules thereof are preserved under (co)localization functors.
引用
收藏
页码:153 / 178
页数:25
相关论文
共 25 条
[1]  
Barwick C(2010)On left and right model categories and left and right Bousfield localizations Homol. Homotopy Appl. 12 245-320
[2]  
Berger C(2003)Axiomatic homotopy theory for operads Comment. Math. Helv. 78 805-831
[3]  
Moerdijk I(2009)On the derived category of an algebra over an operad Georgian Math. J. 16 13-28
[4]  
Berger C(2006)Rings, modules, and algebras in infinite loop space theory Adv. Math. 205 163-228
[5]  
Moerdijk I(2012)Transfer of algebras over operads along Quillen adjunctions J. Lond. Math. Soc. (2) 86 607-625
[6]  
Elmendorf AD(2012)Motivic slices and coloured operads J. Topol. 5 727-755
[7]  
Mandell MA(2012)A model structure for coloured operads in symmetric spectra Math. Z. 270 223-239
[8]  
Gutiérrez JJ(2013)Preorientations of the derived motivic multiplicative group Algebr. Geom. Topol. 13 2667-2712
[9]  
Gutiérrez JJ(2015)On the unit of a monoidal model category Topology Appl. 191 37-47
[10]  
Röndigs O(2014)Stable motivic Adv. Math. 265 97-131