The solutions of then-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution

被引:0
作者
Hüseyin Yildirim
M. Zeki Sarikaya
Sermin öztürk
机构
[1] Kocatepe University,Department of Mathematics, Faculty of Science and Arts
来源
Proceedings Mathematical Sciences | 2004年 / 114卷
关键词
Diamond operator; tempered distribution; Fourier-Bessel transform;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the operator\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\diamondsuit _B^k $$ \end{document} is introduced and named as the Bessel diamond operator iteratedk times and is defined by\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\diamondsuit _B^k = [(B_{x_1 } + B_{x_2 } + \cdots + B_{x_p } )^2 - (B_{x_{p + 1} } + \cdots + B_{x_{p + q} } )^2 ]^k $$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p + q = n,B_{x_i } = \tfrac{{\partial ^2 }}{{\partial x_i^2 }} + \tfrac{{2v_i }}{{x_i }}\tfrac{\partial }{{\partial x_i }}$$ \end{document} where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2v_i = 2\alpha _i + 1,\alpha _i > - \tfrac{1}{2}[8],x_i > 0$$ \end{document},i = 1, 2, ...,nk is a non-negative integer andn is the dimension of ℝn+. In this work we study the elementary solution of the Bessel diamond operator and the elementary solution of the operator\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\diamondsuit _B^k $$ \end{document} is called the Bessel diamond kernel of Riesz. Then, we study the Fourier-Bessel transform of the elementary solution and also the Fourier-Bessel transform of their convolution.
引用
收藏
页码:375 / 387
页数:12
相关论文
共 8 条
[1]  
Kananthai A(1997)On the distribution related to the ultra-hyperbolic equations J. Comp. Appl. Math. 84 101-106
[2]  
Kananthai A(1997)On the solution of the Appl. Math. Comput. 88 27-37
[3]  
Kananthai A(1999)-dimensional diamond operator Appl. Math. Comput. 101 151-158
[4]  
Kipriyanov I A(1964)On the Fourier transform of the diamond kernel of Marcel Riesz Dokl. Acad. Nauk USSR 158 274-278
[5]  
Kipriyanov I A(1967)Expansion in Fourier series and integrals with Bessel functions Tr. Math. Im. V. A. Steklova Akad. Nauk SSSR 89 130-213
[6]  
Levitan B M(1951)On the generalized Riesz type potentials Uspeki Mat., Nauka (N.S.) 6 2 102-143
[7]  
Yildirim H(2001)undefined J. Inst. Math. Comp. Sci. 14 217-224
[8]  
Sarikaya M Z(undefined)undefined undefined undefined undefined-undefined