Asymmetric decompositions of abelian groups

被引:0
作者
T. O. Banach
I. V. Protasov
机构
[1] I. Franko Lvov State University,
[2] T. Shevchenko Kiev State University,undefined
来源
Mathematical Notes | 1999年 / 66卷
关键词
Abelian group; asymmetric set; asymmetric decomposition; free rank; 2-rank;
D O I
暂无
中图分类号
学科分类号
摘要
A subsetA of an Abelian groupG is said to be asymmetric ifg+S⊄A for any elementg∈G and any infinite symmetric subsetS⊂G (S=−S). The minimal cardinality of a decomposition of the groupG into asymmetric sets is denoted by ν(G). for any Abelian groupG, the cardinal number ν(G is expressed via the following cardinal invariants: the free rank, the 2-rank, and the cardinality of the group. In particular,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v(\mathbb{Z}^n ) = n + 1,{\text{ }}v(\mathbb{Q}^n ) = n + 2,{\text{ and }}v(\mathbb{R}) + \aleph _0 $$ \end{document}.
引用
收藏
页码:8 / 15
页数:7
相关论文
共 4 条
[1]  
Protasov I. V.(1996)Asymmetrically decomposable Abelian groups Mat. Zametki 59 468-471
[2]  
Hajnal A.(1990)Partitioning the pairs and triples of topological spaces Topology Appl. 35 177-184
[3]  
Juhász I.(undefined)undefined undefined undefined undefined-undefined
[4]  
Weiss W.(undefined)undefined undefined undefined undefined-undefined