A scheme for remote state preparation of a general pure qubit with optimized classical communication cost

被引:0
作者
Congyi Hua
Yi-Xin Chen
机构
[1] Zhejiang University,Zhejiang Institute of Modern Physics
来源
Quantum Information Processing | 2015年 / 14卷
关键词
Remote state preparation; Quantum information; Quantum protocol;
D O I
暂无
中图分类号
学科分类号
摘要
How to use shared entanglement and forward classical communication to remotely prepare an arbitrary (mixed or pure) state has been fascinating quantum information scientists. Berry has given a constructive scheme for remotely preparing a general pure state, using a pure entangled state and finite classical communication. To optimize the classical communication cost, Berry employed a coding of the high-dimensional target state. Though working in the high-dimensional cases, the coding method is inapplicable for low-dimensional systems, such as a pure qubit. Since qubit plays a central role in quantum information theory, here we propose an optimization procedure which can be used to minimize the classical communication cost in preparing a general pure qubit. Interestingly, our optimization procedure is linked to the uniform arrangement of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} points on the Bloch sphere, which provides a geometric description.
引用
收藏
页码:1069 / 1076
页数:7
相关论文
共 45 条
  • [1] Lo H-K(2000)Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity Phys. Rev. A 62 012313-undefined
  • [2] Pati AK(2000)Minimum classical bit for remote preparation and measurement of a qubit Phys. Rev. A 63 014302-undefined
  • [3] Bennett CH(2001)Remote state preparation Phys. Rev. Lett. 87 077902-undefined
  • [4] DiVincenzo DP(2001)Low-entanglement remote state preparation Phys. Rev. Lett. 87 197901-undefined
  • [5] Shor PW(2013)The faithful remote preparation of general quantum states Quantum Inf. Process. 12 279-undefined
  • [6] Smolin JA(2014)Joint remote state preparation between multi-sender and multi-receiver Quantum Inf. Process. 13 1979-undefined
  • [7] Terhal BM(1993)Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895-undefined
  • [8] Wootters WK(2003)Oblivious remote state preparation Phys. Rev. Lett. 90 127905-undefined
  • [9] Devetak I(2004)Faithful remote state preparation using finite classical bits and a nonmaximally entangled state Phys. Rev. A 69 022310-undefined
  • [10] Berger T(2004)Resources required for exact remote state preparation Phys. Rev. A 70 062306-undefined