A Mössbauer study of iron and iron–cobalt nanotubes in polymer ion-track membranes

被引:0
|
作者
V. S. Rusakov
K. K. Kadyrzhanov
A. L. Kozlovskii
T. Yu. Kiseleva
M. V. Zdorovets
M. S. Fadeev
机构
[1] Moscow State University,Department of Physics
[2] Eurasian National University,Department of Physics and Technology
来源
关键词
Mössbauer spectroscopy; nanotubes; nanotechnology; template synthesis; magnetic nanostructures;
D O I
暂无
中图分类号
学科分类号
摘要
Iron and iron–cobalt nanostructures that were synthesized in polymer ion-track membranes have been studied via Mössbauer spectroscopy combined with raster electron microscopy, energy-dispersion analysis, and X-ray diffraction data. The obtained nanostructures are single-phase bcc Fe1–xCox nanotubes with a high degree of polycrystallinity, whose length is 12 μm; their diameter is 110 ± 3 nm and the wall thickness is 21 ± 2 nm. Fe2+ and Fe3+ cations were detected in the nanotubes, which belong to iron salts that were used and formed in the electrochemical deposition. The Fe nanotubes exhibit eventual magnetic moment direction distributions of Fe atoms, whereas Fe/Co nanotubes have a partial magnetic structure along the nanotube axis with a mean value of the angle between the magnetic moment and nanotube axis of 34° ± 2°. Substituting the Fe atom with Co in the nearest environment of the Fe atom within the Fe/Co structure of nanotubes leads to a noticeable increase in the hyperfine magnetic field at the 57Fe nuclei (by 8.7 ± 0.4 kOe) and to a slight decrease in the shift of the Mössbauer line (by 0.005 ± 0.004 mm/s).
引用
收藏
页码:193 / 201
页数:8
相关论文
共 50 条
  • [21] Mössbauer Study of Thin Iron Film Beryllization
    K. K. Kadyrzhanov
    V. S. Rusakov
    T. E. Turkebaev
    M. F. Vereschak
    E. A. Kerimov
    D. A. Plaksin
    Hyperfine Interactions, 2002, 141-142 : 453 - 457
  • [22] Mössbauer study of gamma‴-iron nitride film
    Yasuhiro Yamada
    Ryo Usui
    Yoshio Kobayashi
    Hyperfine Interactions, 2013, 219 : 13 - 17
  • [23] Mössbauer study of some biological iron complexes
    Sikander Ali
    V. R. Alimuddin
    Pramana, 2005, 65 : 1121 - 1126
  • [24] Mössbauer Spectroscopy Study of Iron Nickel Alloys
    Abdel-Fatah D. Lehlooh
    Sami H. Mahmood
    Hyperfine Interactions, 2002, 139-140 : 387 - 392
  • [25] Mössbauer study of iron oxide modified montmorillonite
    H. Bartonkova
    M. Mashlan
    R. Zboril
    J. Pechousek
    O. Schneeweiss
    P. Martinec
    Hyperfine Interactions, 2005, 165 : 221 - 225
  • [26] Mössbauer study of Japanese ancient iron slag
    A. Nakanishi
    T. Kobayashi
    S. Miono
    Journal of Radioanalytical and Nuclear Chemistry, 1999, 239 : 309 - 311
  • [27] Mössbauer study of iron uptake in cucumber root
    K. Kovács
    E. Kuzmann
    F. Fodor
    A. Vértes
    A. A. Kamnev
    Hyperfine Interactions, 2005, 165 : 289 - 294
  • [28] Mössbauer study of natural iron-oxide complexes
    Department of Physics, University of Dar-Es-Salaam, P.O. Box 35063, Dar-Es-Salaam, Tanzania, United Republic of
    Hyperfine Interact., 1-8 (535-538):
  • [29] Ion-track membranes of fluoropolymers: Toward controlling the pore size and shape
    Yamaki, T.
    Nuryanthi, N.
    Koshikawa, H.
    Asano, M.
    Sawada, S.
    Hakoda, T.
    Maekawa, Y.
    Voss, K. -O.
    Severin, D.
    Seidl, T.
    Trautmann, C.
    Neumann, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 314 : 77 - 81
  • [30] Study of iron compounds in clay using Mössbauer spectroscopy
    Dias Filho J.H.
    Pereira F.S.
    de Moura Gomes G.F.
    Paniago R.
    Aguilar J.L.L.
    Hyperfine Interactions, 2023, 244 (01):