Optical third-harmonic generation in one-dimensional photonic crystals and microcavities

被引:0
作者
M. G. Martemyanov
T. V. Dolgova
A. A. Fedyanin
机构
[1] Moscow State University,
来源
Journal of Experimental and Theoretical Physics | 2004年 / 98卷
关键词
Refractive Index; Photonic Crystal; Spatial Localization; Porous Silicon; Experimental Spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
The formalism of nonlinear transfer matrices is used to develop a phenomenological model of a cubic nonlinear-optical response of one-dimensional photonic crystals and microcavities. It is shown that third-harmonic generation can be resonantly enhanced by frequency-angular tuning of the fundamental wave to the photonic band-gap edges and the microcavity mode. The positions and amplitudes of third-harmonic resonances at the edges of a photonic band gap strongly depend on the value and sign of the dispersion of refractive indexes of the layers that constitute the photonic crystal. Model calculations elucidate the role played by phase matching and spatial localization of the fundamental and third-harmonic fields inside a photonic crystal as the main mechanisms of enhancement of third-harmonic generation. The experimental spectrum of third-harmonic intensity of a porous silicon microcavity agrees with the calculated results.
引用
收藏
页码:463 / 477
页数:14
相关论文
共 53 条
[1]  
Chen W.(1987)undefined Phys. Rev. Lett. 58 160-undefined
[2]  
Mills D. L.(1994)undefined Phys. Rev. Lett. 73 1368-undefined
[3]  
Scalora M.(2002)undefined J. Opt. Soc. Am. B 19 1865-undefined
[4]  
Dowling J. P.(1968)undefined Phys. Rev. Lett. 21 1404-undefined
[5]  
Bowden C. M.(1970)undefined Appl. Phys. Lett. 17 483-undefined
[6]  
Bloemer M. J.(1976)undefined Appl. Phys. Lett. 28 437-undefined
[7]  
Andreev A. V.(1997)undefined Appl. Phys. Lett. 70 702-undefined
[8]  
Balakin A. V.(1999)undefined Opt. Lett. 24 793-undefined
[9]  
Kozlov A. B.(2001)undefined Appl. Phys. Lett. 78 3021-undefined
[10]  
Freund I.(2002)undefined J. Opt. Soc. Am. B 19 2129-undefined