Common fixed points for some generalized multivalued nonexpansive mappings in uniformly convex metric spaces

被引:0
作者
Worawut Laowang
Bancha Panyanak
机构
[1] Chiang Mai University,Department of Mathematics, Faculty of Science
[2] CHE,Centre of Excellence in Mathematics
来源
Fixed Point Theory and Applications | / 2011卷
关键词
generalized multivalued nonexpansive mapping; commuting mapping; common fixed point; uniformly convex metric space;
D O I
暂无
中图分类号
学科分类号
摘要
Abkar and Eslamian (Nonlinear Anal. TMA, 74, 1835-1840, 2011) prove that if K is a nonempty bounded closed convex subset of a complete CAT(0) space X, t : K → K is a single-valued quasi-nonexpansive mapping and T : K → KC(K) is a multivalued mapping satisfying conditions (E) and (Cλ) for some λ ∈ (0, 1) such that t and T commute weakly, then there exists a point z ∈ K such that z = t(z) ∈ T(z). In this paper, we extend this result to the general setting of uniformly convex metric spaces. Nevertheless, condition (E) of T can be weakened to the strongly demiclosedness of I - T.
引用
收藏
相关论文
共 48 条
[1]  
Abkar A(2011)Common fixed point results in CAT(0) spaces Nonlinear Anal TMA 74 1835-1840
[2]  
Eslamian M(2006)A note on fixed point sets in CAT(0) spaces J Math Anal Appl 320 983-987
[3]  
Chaoha P(2005)Lim's theorems for multivalued mappings in CAT(0) spaces J Math Anal Appl 312 478-487
[4]  
Phon-on A(2009)CAT(k)-spaces, weak convergence and fixed points J Math Anal Appl 353 410-427
[5]  
Dhompongsa S(2010)Common fixed points for multimaps in metric spaces Fixed Point Theory Appl 2010 1-14
[6]  
Kaewkhao A(2009)On asymptotic pointwise contractions in metric spaces Nonlinear Anal TMA 71 4423-4429
[7]  
Panyanak B(2011)Strong and Δ-convergence of some iterative schemes in CAT(0) spaces Comput Math Appl 61 109-116
[8]  
Espinola R(2007)A quadratic rate of asymptotic regularity for CAT(0)-spaces J Math Anal Appl 325 386-399
[9]  
Fernandez-Leon A(2010)Invariant approximation for CAT(0) spaces Non-linear Anal TMA 72 2421-2425
[10]  
Espinola R(2010)Halpern's iteration in CAT(0) spaces Fixed Point Theory Appl 2010 1-13