Pretreatment 18F-FDG PET/CT-Derived Parameters in Predicting Clinical Outcomes of Locally Advanced Upper Third Esophageal Squamous Cell Carcinoma After Definitive Chemoradiation Therapy

被引:0
|
作者
Le Ngoc Ha
Nguyen Dinh Chau
Bui Quang Bieu
Mai Hong Son
机构
[1] Department of Nuclear Medicine,
[2] Department of Radiation Oncology and Radiosurgery,undefined
来源
Nuclear Medicine and Molecular Imaging | 2022年 / 56卷
关键词
F-FDG PET/CT; Standard uptake value; SUVmean; Prognosis; Esophageal squamous cell carcinoma; Definitive chemoradiotherapy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:181 / 187
页数:6
相关论文
共 50 条
  • [31] Metabolic parameters using 18F-FDG PET/CT correlate with occult lymph node metastasis in squamous cell lung carcinoma
    Do-Hoon Kim
    Bong-Il Song
    Chae Moon Hong
    Shin Young Jeong
    Sang-Woo Lee
    Jaetae Lee
    Byeong-Cheol Ahn
    European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41 : 2051 - 2057
  • [32] Prognostic significance of clinical and 18F-FDG PET/CT parameters for post-distant metastasis survival in head and neck squamous cell carcinoma patients
    Cho, Jae-Keun
    Hyun, Seung Hyup
    Choi, Joon Young
    Choi, Nayeon
    Kim, Min-Ji
    Lee, Se-Hoon
    Baek, Kwan-Hyuck
    Jeong, Han-Sin
    JOURNAL OF SURGICAL ONCOLOGY, 2016, 114 (07) : 888 - 894
  • [33] Prognostic Value of Volume-Based Metabolic Parameters Obtained by 18F-FDG-PET/CT in Patients With Locally Advanced Squamous Cell Cervical Carcinoma
    Liang, Ying
    Li, Xiaomeng
    Wan, Huan
    Fang, Yan
    Zheng, Rong
    Zhang, Wenjie
    Liu, Ying
    Chen, Cong
    Wu, Ning
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2018, 42 (03) : 429 - 434
  • [34] Prediction of Recurrence and Mortality of Locally Advanced Esophageal Cancer Patients Using Pretreatment F-18 FDG PET/CT Parameters: Intratumoral Heterogeneity, SUV, and Volumetric Parameters
    Chang, Samuel
    Kim, Seong-Jang
    CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS, 2016, 31 (01) : 1 - 6
  • [35] Clinical significance of VEGFR-2 and 18F-FDG PET/CT SUVmax pretreatment score in predicting the long-term outcome of patients with locally advanced rectal cancer treated with neoadjuvant therapy
    Claudio V. Sole
    Felipe A. Calvo
    Emilio Alvarez
    Isabel Peligros
    Pilar Garcia-Alfonso
    Carlos Ferrer
    Enrique Ochoa
    Rafael Herranz
    Jose L. Carreras
    European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40 : 1635 - 1644
  • [36] Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using 18F-FDG PET Images
    Murakami, Yuji
    Kawahara, Daisuke
    Tani, Shigeyuki
    Kubo, Katsumaro
    Katsuta, Tsuyoshi
    Imano, Nobuki
    Takeuchi, Yuki
    Nishibuchi, Ikuno
    Saito, Akito
    Nagata, Yasushi
    DIAGNOSTICS, 2021, 11 (06)
  • [37] Metabolic parameters on baseline 18F-FDG PET/CT are potential predictive biomarkers for immunotherapy in patients with head and neck squamous cell carcinoma
    Kwon, Hye Ryeong
    Cho, Junhun
    Park, Sehhoon
    Lee, Se-Hoon
    Ahn, Myung-Ju
    Choi, Joon Young
    Lee, Kyung-Han
    Jung, Hyun Ae
    Moon, Seung Hwan
    FRONTIERS IN MEDICINE, 2022, 9
  • [38] Prognostic Value of 18F-FDG PET/CT Volume-Based Metabolic Parameters in Patients with Node-Negative Stage II Esophageal Squamous Cell Carcinoma
    Shen, Daniel Hueng-Yuan
    Chan, Hung-Pin
    Tsai, Fu-Ren
    Hu, Chin
    Chen, Allan Yi-Nan
    Chan, Hung-Yen
    Lee, Che-Hsin
    Chuang, Kuo-Pin
    Yang, Ming-Hui
    Tyan, Yu-Chang
    METABOLITES, 2022, 12 (01)
  • [39] Prognostic value of 18F-FDG PET/CT metabolic parameters in patients with locally advanced pancreatic Cancer treated with stereotactic body radiation therapy
    Ren, Shengnan
    Zhu, Xiaofei
    Zhang, Anyu
    Li, Danni
    Zuo, Changjing
    Zhang, Huojun
    CANCER IMAGING, 2020, 20 (01)
  • [40] A 18F-FDG PET/CT-based deep learning-radiomics-clinical model for prediction of cervical lymph node metastasis in esophageal squamous cell carcinoma
    Yuan, Ping
    Huang, Zhen-Hao
    Yang, Yun-Hai
    Bao, Fei-Chao
    Sun, Ke
    Chao, Fang-Fang
    Liu, Ting-Ting
    Zhang, Jing-Jing
    Xu, Jin-Ming
    Li, Xiang-Nan
    Li, Feng
    Ma, Tao
    Li, Hao
    Li, Zi-Hao
    Zhang, Shan-Feng
    Hu, Jian
    Qi, Yu
    CANCER IMAGING, 2024, 24 (01)