Exact quantization conditions for the elliptic Ruijsenaars-Schneider model

被引:0
作者
Yasuyuki Hatsuda
Antonio Sciarappa
Szabolcs Zakany
机构
[1] Rikkyo University,Department of Physics
[2] Korea Institute for Advanced Study,School of Physics
[3] Département de Physique Théorique et Section de Mathématiques Université de Genéve,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Bethe Ansatz; Supersymmetric Gauge Theory; Topological Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We propose and test exact quantization conditions for the N-particle quantum elliptic Ruijsenaars-Schneider integrable system, as well as its Calogero-Moser limit, based on the conjectural correspondence to the five-dimensional N=1∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={1}^{\ast } $$\end{document} SU(N) gauge theory in the Nekrasov-Shatashvili limit. We discuss two natural sets of quantization conditions, related by the electro-magnetic duality, and the importance of non-perturbative corrections in the Planck constant. We also comment on the eigenfunction problem, by reinterpreting the Separation of Variables approach in gauge theory terms.
引用
收藏
相关论文
共 116 条
  • [1] Olshanetsky MA(1983)Quantum integrable systems related to Lie algebras Phys. Rept. 94 313-undefined
  • [2] Perelomov AM(1986)A new class of integrable systems and its relation to solitons Annals Phys. 170 370-undefined
  • [3] Ruijsenaars SNM(1987)Complete integrability of relativistic calogero-moser systems and elliptic function identities Commun. Math. Phys. 110 191-undefined
  • [4] Schneider H(1999)Relativistic Lamé functions: the special case g = 2 J. Phys. A 32 1737-undefined
  • [5] Ruijsenaars SNM(2010)Nekrasov functions and exact Bohr-Zommerfeld integrals JHEP 04 040-undefined
  • [6] Ruijsenaars SNM(2010)Nekrasov functions from exact BS periods: the case of SU(N) J. Phys. A 43 195401-undefined
  • [7] Mironov A(1980)The quantum mechanical Toda lattice Annals Phys. 124 347-undefined
  • [8] Morozov A(1992)The periodic Toda chain and a matrix generalization of the bessel function recursion relations J. Phys. A 25 5243-undefined
  • [9] Mironov A(1999)Integral representation for the eigenfunctions of quantum periodic Toda chain Lett. Math. Phys. 50 53-undefined
  • [10] Morozov A(2000)Eigenfunctions of GL(N, R) Toda chain: the Mellin-Barnes representation JETP Lett. 71 235-undefined