Representation learning via a semi-supervised stacked distance autoencoder for image classification

被引:0
|
作者
Liang Hou
Xiao-yi Luo
Zi-yang Wang
Jun Liang
机构
[1] Zhejiang University,College of Control Science and Engineering
来源
Frontiers of Information Technology & Electronic Engineering | 2020年 / 21卷
关键词
Autoencoder; Image classification; Semi-supervised learning; Neural network; TP391.9;
D O I
暂无
中图分类号
学科分类号
摘要
Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the “distance” information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.
引用
收藏
页码:1005 / 1018
页数:13
相关论文
共 50 条
  • [21] Combinative hypergraph learning for semi-supervised image classification
    Wei, Binghui
    Cheng, Ming
    Wang, Cheng
    Li, Jonathan
    NEUROCOMPUTING, 2015, 153 : 271 - 277
  • [22] Universal Semi-supervised Learning for Medical Image Classification
    Ju, Lie
    Wu, Yicheng
    Feng, Wei
    Yu, Zhen
    Wang, Lin
    Zhu, Zhuoting
    Ge, Zongyuan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XII, 2024, 15012 : 355 - 365
  • [23] A Semi-supervised Active Learning Framework for Image Classification
    Li, Han-yi
    Yang, Ming
    Kang, Nan-nan
    Yue, Lu-lu
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4765 - 4769
  • [24] Image categorization with semi-supervised learning
    Yu, Zhenghua
    2006 IEEE International Conference on Image Processing, ICIP 2006, Proceedings, 2006, : 3173 - 3176
  • [25] SEMI-SUPERVISED DISTANCE METRIC LEARNING FOR VISUAL OBJECT CLASSIFICATION
    Cevikalp, Hakan
    Paredes, Roberto
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2009, : 315 - +
  • [26] Semi-supervised learning with pseudo-negative labels for image classification
    Xu, Hao
    Xiao, Hui
    Hao, Huazheng
    Dong, Li
    Qiu, Xiaojie
    Peng, Chengbin
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [27] Multi-Modal Curriculum Learning for Semi-Supervised Image Classification
    Gong, Chen
    Tao, Dacheng
    Maybank, Stephen J.
    Liu, Wei
    Kang, Guoliang
    Yang, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3249 - 3260
  • [28] Milking CowMask for Semi-supervised Image Classification
    French, Geoff
    Oliver, Avital
    Salimans, Tim
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2022, : 75 - 84
  • [29] Semi-supervised medical image classification via distance correlation minimization and graph attention regularization
    Berenguer, Abel Diaz
    Kvasnytsia, Maryna
    Bossa, Matias Nicolas
    Mukherjee, Tanmoy
    Deligiannis, Nikos
    Sahli, Hichem
    MEDICAL IMAGE ANALYSIS, 2024, 94
  • [30] Semi-Supervised Learning via Geodesic Weighted Sparse Representation
    Wang, Jianqiao
    Li, Yuehua
    Chen, Jianfei
    Li, Yuanjiang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (06): : 1673 - 1676