Inverse Problem for Equations of Complex Heat Transfer with Fresnel Matching Conditions

被引:0
作者
A. Yu. Chebotarev
机构
[1] Institute of Applied Mathematics,
[2] Far Eastern Branch,undefined
[3] Russian Academy of Sciences,undefined
来源
Computational Mathematics and Mathematical Physics | 2021年 / 61卷
关键词
stationary equations of radiation heat transfer; Fresnel matching conditions; inverse problem; nonlocal solvability;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:288 / 296
页数:8
相关论文
共 101 条
  • [1] Larsen E. W.(2002)Simplified J. Comput. Phys. 183 652-675
  • [2] Thömmes G.(2002) approximations to the equations of radiative heat transfer and applications Transp. Theory Stat. Phys. 31 513-529
  • [3] Klar A.(2013)Numerical methods and optimal control for glass cooling processes Commun. Math. Sci. 11 679-707
  • [4] Seaïd M.(2017)Optimal control of a simplified natural convection–radiation model Opt. Spectrosc. 123 205-210
  • [5] Götz M.(2007)The use of the diffusion approximation for simulating radiation and thermal processes in the skin Commun. Math. Sci. 5 951-969
  • [6] Thömmes G.(2014)Analysis of optimal boundary control for radiative heat transfer modeled by Comput. Math. Math. Phys. 54 1737-1747
  • [7] Pinnau R.(2015)A nonstationary problem of complex heat transfer Sib. Elektron. Mat. Izv. 12 562-576
  • [8] Seaïd M.(2016)Nonhomogeneous nonstationary problem of complex heat transfer Comput. Math. Math. Phys. 56 278-285
  • [9] Götz M.(2016)Nonstationary problem of free convection with radiative heat transfer J. Math. Anal. Appl. 433 1243-1260
  • [10] Klar A.(2013)Boundary optimal control problem of complex heat transfer model Appl. Math. Comput. 219 9356-9362