Sets of Approximation and Interpolation in ℂ for Manifold-Valued Maps

被引:0
作者
Debraj Chakrabarti
机构
[1] University of Western Ontario,Department of Mathematics
来源
Journal of Geometric Analysis | 2008年 / 18卷
关键词
Mergelyan-type Approximation; Manifold-valued maps; 32Q99; 32H02; 30E10;
D O I
暂无
中图分类号
学科分类号
摘要
We give examples of non-smooth sets in the complex plane with the property that every holomorphic map continuous to the boundary from these sets into any complex manifold may be uniformly approximated by maps holomorphic in some neighborhood of the set (Mergelyan-type approximation for manifold-valued maps.) Similar results are proved for sections of complex-valued holomorphic submersions from complex manifolds.
引用
收藏
页码:720 / 739
页数:19
相关论文
共 10 条
  • [1] Chakrabarti D.(2007)Coordinate neighborhoods of arcs and the approximation of maps into (almost) complex manifolds Mich. Math. J. 55 299-333
  • [2] Demailly J.-P.(1978)Un exemple de fibré holomorphe non de Stein à fibre Invent. Math. 48 293-302
  • [3] Douady A.(1966) ayant pour base le disque ou le plan Ann. Inst. Fourier (Grenoble) 16 1-95
  • [4] Drinovec-Drnovšek B.(2007)Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné Duke Math. J. 139 203-254
  • [5] Forstnerič F.(2003)Holomorphic curves in complex spaces Acta Math. 191 143-189
  • [6] Forstnerič F.(1988)Noncritical holomorphic functions on Stein manifolds J. Approx. Theory 52 315-321
  • [7] MacGregor T.H.(2003)Finite boundary interpolation by univalent functions J. Korean Math. Soc. 40 423-434
  • [8] Tepper D.E.(1966)Approximation of non-holomorphic maps, and Poletsky theory of discs Dokl. Akad. Nauk SSSR 171 1255-1258
  • [9] Rosay J.-P.(undefined)Conditions on a set which are necessary and sufficient in order that any continuous function, analytic at its interior points, admit uniform approximation by rational fractions undefined undefined undefined-undefined
  • [10] Vituškin A.G.(undefined)undefined undefined undefined undefined-undefined