Asymptotic convergence of spectral inverse iterations for stochastic eigenvalue problems

被引:0
|
作者
Harri Hakula
Mikael Laaksonen
机构
[1] Aalto University,Department of Mathematics and Systems Analysis
来源
Numerische Mathematik | 2019年 / 142卷
关键词
65C20; 65N12; 65N15; 65N25; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider and analyze applying a spectral inverse iteration algorithm and its subspace iteration variant for computing eigenpairs of an elliptic operator with random coefficients. With these iterative algorithms the solution is sought from a finite dimensional space formed as the tensor product of the approximation space for the underlying stochastic function space, and the approximation space for the underlying spatial function space. Sparse polynomial approximation is employed to obtain the first one, while classical finite elements are employed to obtain the latter. An error analysis is presented for the asymptotic convergence of the spectral inverse iteration to the smallest eigenvalue and the associated eigenvector of the problem. A series of detailed numerical experiments supports the conclusions of this analysis.
引用
收藏
页码:577 / 609
页数:32
相关论文
共 50 条
  • [21] On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems
    Bai, Zhong-Zhi
    Miao, Cun-Qiang
    Jian, Shuai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) : 2396 - 2406
  • [22] NORMALIZED ITERATIONS AND NONLINEAR EIGENVALUE PROBLEMS OF VARIATIONAL TYPE
    COFFMAN, CV
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 187 - &
  • [23] EFFICIENT SPECTRAL AND SPECTRAL ELEMENT METHODS FOR EIGENVALUE PROBLEMS OF SCHRODINGER EQUATIONS WITH AN INVERSE SQUARE POTENTIAL
    Li, Huiyuan
    Zhang, Zhimin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01): : A114 - A140
  • [24] Γ-convergence: an application to eigenvalue problems
    Brahmi, Ibtissam
    El Khalil, Abdelouahed
    Touzani, Abdelfattah
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 449 - 457
  • [25] Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata
    Chen, Meixiang
    Weng, Zhifeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [26] Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata
    Meixiang Chen
    Zhifeng Weng
    Computational and Applied Mathematics, 2021, 40
  • [27] DISCONTINUOUS INVERSE EIGENVALUE PROBLEMS
    HALD, OH
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (05) : 539 - 577
  • [28] Inverse Problems on the Least Eigenvalue
    Jie Yang
    Chuan-Fu Yang
    Results in Mathematics, 2014, 65 : 321 - 332
  • [29] On matrix inverse eigenvalue problems
    Ji, XZ
    INVERSE PROBLEMS, 1998, 14 (02) : 275 - 285
  • [30] UNIQUENESS OF INVERSE EIGENVALUE PROBLEMS
    BARCILON, V
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1974, 38 (02): : 287 - 298