Holographic F(Q,T) Gravity with Lambert Solution

被引:0
|
作者
Filali, Houda [1 ]
Koussour, M. [2 ]
Bennai, M. [2 ]
Laamara, Rachid Ahl [1 ,3 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, Lab High Energy Phys Modeling & Simulat, Rabat, Morocco
[2] Casablanca Hassan II Univ, Quantum Phys & Applicat Team, LPMC, Fac Sci Ben Msik, Casablanca, Morocco
[3] Mohammed V Univ Rabat, Fac Sci, Ctr Phys & Math, Rabat, Morocco
基金
英国科研创新办公室;
关键词
Modified gravity; Holographic dark energy; Teleparallel gravity; Lambert solution; ACCELERATING UNIVERSE; MODEL; ANISOTROPY; QUANTUM;
D O I
10.1007/s10773-024-05643-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we study a model of holographic dark energy using FLRW cosmology in the context of modified gravity. An extension of the symmetric teleparallel gravity is obtained by considering the gravitational action L is given by an arbitrary function f of the non-metricity Q, where the nonmetricity Q is responsible for the gravitational interaction, and of the trace of the matter-energy-momentum tensor T, so that L=f(Q,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=f(Q,T)$$\end{document}. We expand on the features of the derived cosmological model in view of the relation between cosmic time and redshift as t(z)=kt0bf(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(z)=\frac{kt_{0}}{b}f(z)$$\end{document} where f(z)=Wbkeb-ln(1+z)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=W\left[ \frac{b}{k}e<^>{\frac{b-ln(1+z)}{k}} \right] $$\end{document} and W denotes the Lambert function, and discuss the evolution trajectories of the equation of state parameter and deceleration parameters in the evolving universe using a special then a generalized version of the model.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Noncommutative wormhole solutions in F(T, Tg) gravity
    Sharif, M.
    Nazir, Kanwal
    MODERN PHYSICS LETTERS A, 2017, 32 (13)
  • [42] Exact homogenous anisotropic solution in f(T) gravity theory
    Nashed, Gamal G. L.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (09):
  • [43] Cosmological aspects of a hyperbolic solution in f(R, T) gravity
    Nagpal, Ritika
    Singh, J. K.
    Beesham, A.
    Shabani, Hamid
    ANNALS OF PHYSICS, 2019, 405 : 234 - 255
  • [44] Anisotropic solution for compact objects in f(g, T) gravity
    Sharif, M.
    Naeem, Aroob
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (22):
  • [45] Power-law solution for homogeneous and isotropic universe in f(R, T) gravity
    Sharma, Lokesh Kumar
    Yadav, Anil Kumar
    Singh, B. K.
    NEW ASTRONOMY, 2020, 79
  • [46] A study of modified holographic Ricci dark energy in the framework of f(T) modified gravity and its statefinder hierarchy
    Majumdar, Arkaprabha
    Chattopadhyay, Surajit
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (05) : 477 - 486
  • [47] Generalized Chaplygin gas and accelerating universe in f (Q, T) gravity
    Gadbail, Gaurav N.
    Arora, Simran
    Sahoo, P. K.
    PHYSICS OF THE DARK UNIVERSE, 2022, 37
  • [48] Viscous cosmology in the Weyl-type f(Q, T) gravity
    Gadbail, Gaurav N.
    Arora, Simran
    Sahoo, P. K.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (12):
  • [49] Crossing Phantom Divide in f(Q)$f(Q)$ Gravity
    Arora, Simran
    Sahoo, Pradyumn Kumar
    ANNALEN DER PHYSIK, 2022, 534 (08)
  • [50] Weyl type f(Q, T) gravity, and its cosmological implications
    Xu, Yixin
    Harko, Tiberiu
    Shahidi, Shahab
    Liang, Shi-Dong
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):