GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana

被引:0
|
作者
Shengchun Zhang
Chengwei Yang
Jianzong Peng
Shulan Sun
Xiaojing Wang
机构
[1] South China Normal University,Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences
来源
Plant Molecular Biology | 2009年 / 69卷
关键词
Flowering; Inflorescence stem;
D O I
暂无
中图分类号
学科分类号
摘要
Flowering is a critical event in the life cycle of plants and is regulated by a combination of endogenous controls and environmental cues. In the present work, we provide clear genetic evidence that GASA5, a GASA family gene in Arabidopsis (Arabidopsis thaliana), is involved in controlling flowering time and stem growth. GASA5 expression was present in all tissues of Arabidopsis plants, as detected by RT-PCR, and robust GUS staining was observed in the shoot apex of 8-day-old seedlings and inflorescence meristems during reproductive development. Phenotypic analysis showed that a GASA5 null mutant (gasa5-1) flowered earlier than wild type with a faster stem growth rate under both long-day (LD) and short-day (SD) photoperiods. In contrast, transgenic plants overexpressing GASA5 demonstrated delayed flowering, with a slower stem growth rate compared to wild-type plants. However, neither the GASA5 null mutants nor the GASA5 overexpressing plants revealed obvious differences in flowering time upon treatment with gibberellic acid (GA3), indicating that GASA5 is involved in gibberellin (GA)-promoted flowering. GAI (GA INSENSITIVE), one of the five DELLAs in Arabidopsis, was more highly expressed in GASA5-overexpressing plants, but it was lower in gasa5-1. Further transcript profiling analysis suggested that GASA5 delayed flowering by enhancing FLOWERING LOCUS C (FLC) expression and repressing the expression of key flowering-time genes, FLOWERING LOCUS T (FT) and LEAFY (LFY). Our results suggest that GASA5 is a negative regulator of GA-induced flowering and stem growth.
引用
收藏
页码:745 / 759
页数:14
相关论文
共 50 条
  • [21] Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana
    Melzer, Siegbert
    Lens, Frederic
    Gennen, Jerome
    Vanneste, Steffen
    Rohde, Antje
    Beeckman, Tom
    NATURE GENETICS, 2008, 40 (12) : 1489 - 1492
  • [22] Potent induction of Arabidopsis thaliana flowering by elevated growth temperature
    Balasubramanian, Sureshkumar
    Sureshkumar, Sridevi
    Lempe, Janne
    Weigel, Detlef
    PLOS GENETICS, 2006, 2 (07): : 980 - 989
  • [23] Population Genomics of the Arabidopsis thaliana Flowering Time Gene Network
    Flowers, Jonathan M.
    Hanzawa, Yoshie
    Hall, Megan C.
    Moore, Richard C.
    Purugganan, Michael D.
    MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (11) : 2475 - 2486
  • [24] Effect of the 5-azacytidine on the flowering of Arabidopsis thaliana.
    Sarazin, B
    Chané-Favre, L
    Greppin, H
    ARCHIVES DES SCIENCES, 2000, 53 (03): : 233 - 237
  • [25] Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana
    Kumar, Abhishek
    Singh, Anamika
    Panigrahy, Madhusmita
    Sahoo, Pratap Kumar
    Panigrahi, Kishore C. S.
    PLANT CELL REPORTS, 2018, 37 (06) : 901 - 912
  • [26] Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature
    Brachi, Benjamin
    Faure, Nathalie
    Horton, Matt
    Flahauw, Emilie
    Vazquez, Adeline
    Nordborg, Magnus
    Bergelson, Joy
    Cuguen, Joel
    Roux, Fabrice
    PLOS GENETICS, 2010, 6 (05): : 40
  • [27] Genetic Architecture of Flowering-Time Variation in Arabidopsis thaliana
    Salome, Patrice A.
    Bomblies, Kirsten
    Laitinen, Roosa A. E.
    Yant, Levi
    Mott, Richard
    Weigel, Detlef
    GENETICS, 2011, 188 (02) : 421 - U313
  • [28] Temperature-mediated regulation of flowering time in Arabidopsis thaliana
    Brightbill, C. Maddie
    Sung, Sibum
    ABIOTECH, 2022, 3 (01) : 78 - 84
  • [29] Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana
    Abhishek Kumar
    Anamika Singh
    Madhusmita Panigrahy
    Pratap Kumar Sahoo
    Kishore C. S. Panigrahi
    Plant Cell Reports, 2018, 37 : 901 - 912
  • [30] Temperature-mediated regulation of flowering time in Arabidopsis thaliana
    C. Maddie Brightbill
    Sibum Sung
    aBIOTECH, 2022, 3 : 78 - 84