NanoVipa: a miniaturized high-resolution echelle spectrometer, for the monitoring of young stars from a 6U Cubesat

被引:15
作者
Bourdarot G. [1 ,2 ]
Le Coarer E. [1 ,2 ]
Bonfils X. [1 ]
Alecian E. [1 ]
Rabou P. [1 ]
Magnard Y. [1 ]
机构
[1] Institut de Planétologie et d’Astrophysique de Grenoble, UGA, BP 53, Grenoble Cedex 9
[2] Centre Spatial Universitaire de Grenoble, BP 53, Grenoble Cedex 9
关键词
CubeSat; Echelle spectrometer; Exoplanets; High spectral resolution; Miniaturized spectrometer; Young stars;
D O I
10.1007/s12567-017-0168-2
中图分类号
学科分类号
摘要
We introduce to astrophysical instrumentation and space optics the use of virtually imaged phased array (VIPA) to shrink échelle spectrometers and/or increase their resolution. Here, we report on both a concept of an echelle spectrometer with resolution R= 50 , 000 (@653nm), which fits a 6U nanosatellite platform (1U=10cm×10cm×10cm), and on our laboratory tests on a R= 200 , 000 demonstrator. The outline of our paper is as follows: Sect. 1 introduces our concept of a 6U payload comprising an échelle spectrometer based on the VIPA. We present also the science cases of monitoring young stars, and the wider science landscape amenable with larger telescopes. Section 2 gives a more detailed description of the VIPA and of its implementation in a cross-dispersed spectrometer. Section 3 shows the first results at R= 200 , 000 we already achieved at the Institut de Planétologie et d’Astrophysique de Grenoble (IPAG). Finally, Sect. 4 is a discussion on the remaining technical points to study. © 2017, CEAS.
引用
收藏
页码:411 / 419
页数:8
相关论文
共 22 条
[1]  
Diddams S.A., Et al., Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb, Nature, 445, (2007)
[2]  
Shirasaki M., Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer, Opt. Lett., 21, pp. 366-368, (1996)
[3]  
Xiao S., Et al., Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA), J. Lightwave Technol., 23, pp. 1456-1467, (2005)
[4]  
Weiner A.M., Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum., 71, pp. 1929-1960, (2000)
[5]  
Scarcelli G., Et al., Confocal Brillouin microscopy for three-dimensional mechanical imaging, Nat. Photon., 2, pp. 39-43, (2008)
[6]  
Scarcelli G., Non-contact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy, Nat. Methods (published online, (2015)
[7]  
Meng Z., Et al., Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) camera, Appl. Spectrosc., 70, 8, pp. 1356-1363, (2016)
[8]  
Scarcelli G., Et al., Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy, Optics Exp., 19, 11, pp. 10913-10922, (2011)
[9]  
Berghaus K., Et al., High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion, Opt. Lett., 40, 19, pp. 4436-4439, (2015)
[10]  
Edrei E., Et al., Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging, Opt. Exp., 25, 6, pp. 6895-6903, (2017)