Higgs Field—Fermion Coupling in the Tensor Dirac Theory

被引:0
作者
Frank Reifler
Randall Morris
机构
[1] Lockheed Martin Corporation,Government Electronic Systems 137
来源
International Journal of Theoretical Physics | 2000年 / 39卷
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Gauge Symmetry; Einstein Equation;
D O I
暂无
中图分类号
学科分类号
摘要
In previous work, the Dirac and Einstein equations were unified in a tetradformulation of a Kaluza—Klein model which gives precisely the usualDirac—Einstein Lagrangian. In this model, the self-adjoint modes of the tetraddescribe gravity, whereas the isometric modes of the tetrad together with a scalarfield describe fermions. The tetrad Kaluza—Klein model is based on a constrainedYang—Mills formulation of the Dirac Lagrangian in which the bispinor field Ψis mapped to a set of SL(2, R) × U(1) gauge potentialsAKa and a complex scalarfield ρ. In this paper we generalize the map Ψ →(AKa, ρ) to multiplets of nbispinor fields representing a fermion multiplet as in standard electroweak theory.We show that the Lagrangian for bispinor multiplets used in the Standard Modelbecomes a constrained Yang—Mills Lagrangian, for which the Higgs fielddetermines a noninvariant gauge metric, thereby breaking the full gauge symmetry.
引用
收藏
页码:2633 / 2665
页数:32
相关论文
共 18 条
[1]  
Reifler F.(1995)undefined J. Math. Phys. 36 1741-1752
[2]  
Morris R.(1996)undefined J. Math. Phys. 37 3630-3640
[3]  
Reifler F.(1994)undefined Int. J. Mod. Phys. A. 9 5507-5515
[4]  
Morris R.(1992)undefined Ann. Phys. 215 264-276
[5]  
Reifler F.(1999)undefined J. Math. Phys. 40 2680-2697
[6]  
Morris R.(1990)undefined J. Math. Phys. 31 2501-2510
[7]  
Reifler F.(1994)undefined Commun. Partial Differential Eqns. 19 1203-1215
[8]  
Morris R.(1995)undefined Class. Quantum Grav. 12 279-285
[9]  
Reifler F.(1974)undefined Rep. Prog. Phys. 37 1211-1256
[10]  
Morris R.(1983)undefined J. Math. Phys. 24 1783-1790