A refined invariant subspace method and applications to evolution equations

被引:0
作者
Wen-Xiu Ma
机构
[1] University of South Florida,Department of Mathematics and Statistics
来源
Science China Mathematics | 2012年 / 55卷
关键词
invariant subspace; generalized separation of variables; evolution equation; 37J15; 37K35; 35A24; 37K40;
D O I
暂无
中图分类号
学科分类号
摘要
The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.
引用
收藏
页码:1769 / 1778
页数:9
相关论文
共 42 条
  • [1] Fokas A. S.(1994)Nonlinear interaction of travelling waves of nonintegrable equations Phys Rev Lett 72 3293-3296
  • [2] Liu Q. M.(1995)Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities Proc Roy Soc Endin Sect A 125 225-246
  • [3] Galaktionov V. A.(1986)Soliton structure of the Drinfel’d-Sokolov-Wilson equation J Math Phys 27 1499-1505
  • [4] Hirota R.(1993)Exact polynomial solutions to some nonlinear diffusion equations Physica D 64 35-65
  • [5] Grammaticos B.(2007)Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons Inverse Problems 23 279-296
  • [6] Ramani A.(2002)Complexiton solutions to the Korteweg-de Vries equation Phys Lett A 301 35-44
  • [7] King J. R.(2005)Complexiton solutions to integrable equations Nonlinear Anal 63 e2461-e2471
  • [8] Li C. X.(2011)Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation Appl Math Comput 217 10016-10023
  • [9] Ma W. X.(2011)Linear superposition principle applying to Hirota bilinear equations Comput Math Appl 61 950-959
  • [10] Liu X. J.(2010)A multiple exp-function method for nonlinear differential equations and its application Phys Scr 82 065003-4258