On Anisotropic Polynomial Relations for the Elasticity Tensor

被引:0
作者
N. Auffray
B. Kolev
M. Petitot
机构
[1] MSME UMR 8208 CNRS,LMSME, Université Paris
[2] CNRS & Université d’Aix-Marseille,Est, Laboratoire Modélisation et Simulation Multi Echelle
[3] Université des Sciences et Technologies de Lille I,LATP
来源
Journal of Elasticity | 2014年 / 115卷
关键词
Symmetry classes; Invariants; Anisotropy; 74B05; 15A72;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we explore new conditions for an elasticity tensor to belong to a given symmetry class. Our goal is to propose an alternative approach to the identification problem of the symmetry class, based on polynomial invariants and covariants of the elasticity tensor C, rather than on spectral properties of the Kelvin representation. We compute a set of algebraic relations which describe precisely the orthotropic (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\mathbb {D}_{2}]$\end{document}), trigonal (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\mathbb {D}_{3}]$\end{document}), tetragonal (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\mathbb {D}_{4}]$\end{document}), transverse isotropic ([SO(2)]) and cubic (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\mathbb {O}]$\end{document}) symmetry classes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {H}^{4}$\end{document}, the highest-order irreducible component in the decomposition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {E}\mathrm {la}$\end{document}. We provide a bifurcation diagram which describes how one “travels” in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {H}^{4}$\end{document} from a given isotropy class to another. Finally, we study the link between these polynomial invariants and those obtained as the coefficients of the characteristic or the Betten polynomials. We show, in particular, that the Betten invariants do not separate the orbits of the elasticity tensors.
引用
收藏
页码:77 / 103
页数:26
相关论文
共 42 条
[1]  
Abud M.(1981)The geometry of orbit-space and natural minima of Higgs potentials Phys. Lett. B 104 147-152
[2]  
Sartori G.(1983)The geometry of spontaneous symmetry breaking Ann. Phys. 150 307-372
[3]  
Abud M.(2008)Démonstration du théorème de Hermann à partir de la méthode Forte-Vianello C. R., Méc. 336 458-463
[4]  
Sartori G.(2010)Analytical expressions for anisotropic tensor dimension C. R., Méc. 338 260-265
[5]  
Auffray N.(1970)A geometrical picture of anisotropic elastic tensors Rev. Geophys. 8 633-671
[6]  
Auffray N.(1993)Harmonic decomposition of the anisotropic elasticity tensor Q. J. Mech. Appl. Math. 46 391-418
[7]  
Backus G.(1987)Irreducible invariants of fourth-order tensors Math. Model. 8 29-33
[8]  
Baerheim R.(1994)On the polynomial invariants of the elasticity tensor J. Elast. 34 97-110
[9]  
Betten J.(2004)Characterization of elasticity-tensor symmetries using SU(2) J. Elast. 75 267-289
[10]  
Boehler J.P.(2007)Coordinate-free characterization of the symmetry classes of elasticity tensors J. Elast. 87 109-132