Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking

被引:0
作者
Chao Li
Jun Sun
Vasile Palade
机构
[1] Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education),Faculty of Engineering and Computing
[2] Coventry University,undefined
来源
BMC Bioinformatics | / 21卷
关键词
Flexible ligand docking; Search algorithms; Random drift particle swarm optimization; Diversity control strategy; Solis and Wets local search; Autodock software;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 73 条
[1]  
López-Camacho E(2015)Solving molecular flexible docking problems with metaheuristics: a comparative study Appl Soft Comput 28 379-393
[2]  
García Godoy MJ(2010)Virtual screening in drug design and development Comb Chem High Throughput Screen 13 442-453
[3]  
García-Nieto J(2007)SODOCK: swarm optimization for highly flexible protein-ligand docking J Comput Chem 28 612-623
[4]  
Nebro AJ(2014)GalaxySite: ligand-binding-site prediction by using molecular docking Nucleic Acids Res 42 210-214
[5]  
Aldana-Montes JF(1998)Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J Comput Chem 19 1639-1662
[6]  
Sousa SF(2007)Research article: PSO@AUTODOCK: a fast flexible molecular docking program based on swarm intelligence Chem Biol Drug Des 70 475-484
[7]  
Nuno MFSAC(2014)jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework Bioinformatics. 30 437-438
[8]  
Fernandes PA(2013)FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm J Comput Chem 34 67-75
[9]  
Joao RM(2012)Molecular docking with opposition-based differential evolution//proceedings of the 27th annual ACM symposium on applied computing SAC ‘12 ACM 1 1387-1392
[10]  
Chen HM(2013)Self-adaptive differential evolution algorithm incorporating local search for protein-ligand docking J Phys Conf Ser 410 2030-376