Informativeness of Linear Functionals

被引:0
作者
Sh. Azhgaliev
N. Temirgaliev
机构
[1] L. N. Gumilev Eurasian National University,
来源
Mathematical Notes | 2003年 / 73卷
关键词
linear functional; reconstruction problem; Besov class; Sobolev class; numerical integration; reconstruction of functions; Fourier coefficients;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the informativeness of linear functionals in reconstruction problems and obtain exact orders of the informativeness of linear functionals in the Besov and Sobolev classes W and SW.
引用
收藏
页码:759 / 768
页数:9
相关论文
共 8 条
[1]  
Temirgaliev N.(1997)Number-theoretic methods and the probability-theoretic approach to problems in calculus. The theory of embeddings and approximations, absolute convergence, and the transformation of Fourier series Vestnik Evraz. Univ. 3 90-144
[2]  
Smolyak S. A.(1963)Quadrature and interpolation formulas on tensor products of some classes of functions Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.] 148 1042-1045
[3]  
Frolov K. K.(1976)Upper bounds for the errors of quadrature formulas on classes of functions Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.] 231 818-821
[4]  
Temlyakov V. N.(1985)Approximate reconstruction of functions of several variables Mat. Sb. [Math USSR-Sb.] 228 256-268
[5]  
Skriganov M. M.(1980)On lattices in fields of algebraic numbers Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.] 306 353-355
[6]  
Voronin S. M.(1997)On interpolation formulas for a class of Fourier polynomials Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.] 61 19-35
[7]  
Kudryavtsev S. N.(1998)The best accuracy in the reconstruction of functions of finite smoothness from their values at a given number of points Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.] 62 21-58
[8]  
Temirgaliev N.(1990)Application of divisor theory to the approximate reconstruction and integration of periodic functions of several variables Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.] 310 1050-1054