First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$_3$$ \end{document} perovskite under strain conditions

被引:1
|
作者
Marco Fronzi
Yoshitaka Tateyama
Nicola Marzari
Michael Nolan
Enrico Traversa
机构
[1] National Institute for Materials Science (NIMS),International Center for Materials Nanoarchitectonics (MANA)
[2] Xi’an Jiaotong University,State Key Laboratory of Multiphase Flow in Power Engineering, International Research Center for Renewable Energy
[3] Ècole Polytechnique Fédérale de Lausanne (EPFL),undefined
[4] Tyndall National Institute,undefined
[5] University College Cork,undefined
关键词
First principles calculations; Proton conduction; Strain effect; Fuel cells;
D O I
10.1007/s40243-016-0078-9
中图分类号
学科分类号
摘要
First-principles molecular dynamics simulations have been employed to analyse the proton diffusion in cubic BaZrO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$_3$$ \end{document} perovskite at 1300 K. A non-linear effect on the proton diffusion coefficient arising from an applied isometric strain up to 2 %\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\%$$ \end{document} of the lattice parameter, and an evident enhancement of proton diffusion under compressive conditions have been observed. The structural and electronic properties of BaZrO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$_3$$ \end{document} are analysed from Density Functional Theory calculations, and after an analysis of the electronic structure, we provide a possible explanation for an enhanced ionic conductivity of this bulk structure that can be caused by the formation of a preferential path for proton diffusion under compressive strain conditions. By means of Nudged Elastic Band calculations, diffusion barriers were also computed with results supporting our conclusions.
引用
收藏
相关论文
共 50 条